oceansweep
commited on
Commit
•
09afec6
1
Parent(s):
077a7d5
Upload 9 files
Browse files- App_Function_Libraries/Chat.py +50 -16
- App_Function_Libraries/Chunk_Lib.py +375 -186
- App_Function_Libraries/LLM_API_Calls.py +1108 -965
- App_Function_Libraries/LLM_API_Calls_Local.py +128 -34
- App_Function_Libraries/Prompt_Handling.py +3 -1
App_Function_Libraries/Chat.py
CHANGED
@@ -19,53 +19,89 @@ from App_Function_Libraries.LLM_API_Calls import chat_with_openai, chat_with_ant
|
|
19 |
from App_Function_Libraries.LLM_API_Calls_Local import chat_with_aphrodite, chat_with_local_llm, chat_with_ollama, \
|
20 |
chat_with_kobold, chat_with_llama, chat_with_oobabooga, chat_with_tabbyapi, chat_with_vllm, chat_with_custom_openai
|
21 |
from App_Function_Libraries.DB.SQLite_DB import load_media_content
|
22 |
-
from App_Function_Libraries.Utils.Utils import generate_unique_filename
|
|
|
|
|
23 |
#
|
24 |
####################################################################################################
|
25 |
#
|
26 |
# Functions:
|
27 |
|
|
|
28 |
def chat_api_call(api_endpoint, api_key, input_data, prompt, temp, system_message=None):
|
29 |
if not api_key:
|
30 |
api_key = None
|
|
|
31 |
try:
|
32 |
logging.info(f"Debug - Chat API Call - API Endpoint: {api_endpoint}")
|
33 |
logging.info(f"Debug - Chat API Call - API Key: {api_key}")
|
34 |
logging.info(f"Debug - Chat chat_api_call - API Endpoint: {api_endpoint}")
|
35 |
if api_endpoint.lower() == 'openai':
|
36 |
response = chat_with_openai(api_key, input_data, prompt, temp, system_message)
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
elif api_endpoint.lower() == "cohere":
|
40 |
-
response = chat_with_cohere(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
elif api_endpoint.lower() == "groq":
|
42 |
response = chat_with_groq(api_key, input_data, prompt, temp, system_message)
|
|
|
43 |
elif api_endpoint.lower() == "openrouter":
|
44 |
response = chat_with_openrouter(api_key, input_data, prompt, temp, system_message)
|
|
|
45 |
elif api_endpoint.lower() == "deepseek":
|
46 |
response = chat_with_deepseek(api_key, input_data, prompt, temp, system_message)
|
|
|
47 |
elif api_endpoint.lower() == "mistral":
|
48 |
response = chat_with_mistral(api_key, input_data, prompt, temp, system_message)
|
|
|
49 |
elif api_endpoint.lower() == "llama.cpp":
|
50 |
-
response = chat_with_llama(input_data, prompt, temp, system_message)
|
51 |
elif api_endpoint.lower() == "kobold":
|
52 |
response = chat_with_kobold(input_data, api_key, prompt, temp, system_message)
|
|
|
53 |
elif api_endpoint.lower() == "ooba":
|
54 |
response = chat_with_oobabooga(input_data, api_key, prompt, temp, system_message)
|
|
|
55 |
elif api_endpoint.lower() == "tabbyapi":
|
56 |
response = chat_with_tabbyapi(input_data, prompt, temp, system_message)
|
|
|
57 |
elif api_endpoint.lower() == "vllm":
|
58 |
response = chat_with_vllm(input_data, prompt, system_message)
|
|
|
59 |
elif api_endpoint.lower() == "local-llm":
|
60 |
response = chat_with_local_llm(input_data, prompt, temp, system_message)
|
|
|
61 |
elif api_endpoint.lower() == "huggingface":
|
62 |
response = chat_with_huggingface(api_key, input_data, prompt, temp) # , system_message)
|
|
|
63 |
elif api_endpoint.lower() == "ollama":
|
64 |
-
response = chat_with_ollama(input_data, prompt, temp, system_message)
|
|
|
65 |
elif api_endpoint.lower() == "aphrodite":
|
66 |
response = chat_with_aphrodite(input_data, prompt, temp, system_message)
|
|
|
67 |
elif api_endpoint.lower() == "custom-openai-api":
|
68 |
response = chat_with_custom_openai(api_key, input_data, prompt, temp, system_message)
|
|
|
69 |
else:
|
70 |
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
|
71 |
|
@@ -97,12 +133,10 @@ def chat(message, history, media_content, selected_parts, api_endpoint, api_key,
|
|
97 |
# logging.debug(f"Debug - Chat Function - Combined Content: {combined_content[:500]}...")
|
98 |
|
99 |
# Prepare the input for the API
|
100 |
-
if
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# Print first 500 chars
|
105 |
-
# logging.info(f"Debug - Chat Function - Input Data: {input_data[:500]}...")
|
106 |
|
107 |
if system_message:
|
108 |
print(f"System message: {system_message}")
|
@@ -110,7 +144,7 @@ def chat(message, history, media_content, selected_parts, api_endpoint, api_key,
|
|
110 |
temperature = float(temperature) if temperature else 0.7
|
111 |
temp = temperature
|
112 |
|
113 |
-
logging.debug("Debug - Chat Function - Temperature: {temperature}")
|
114 |
logging.debug(f"Debug - Chat Function - API Key: {api_key[:10]}")
|
115 |
logging.debug(f"Debug - Chat Function - Prompt: {prompt}")
|
116 |
|
@@ -124,13 +158,13 @@ def chat(message, history, media_content, selected_parts, api_endpoint, api_key,
|
|
124 |
|
125 |
|
126 |
|
127 |
-
def save_chat_history_to_db_wrapper(chatbot, conversation_id, media_content):
|
128 |
logging.info(f"Attempting to save chat history. Media content type: {type(media_content)}")
|
129 |
try:
|
130 |
# Extract the media_id and media_name from the media_content
|
131 |
media_id = None
|
132 |
-
media_name = None
|
133 |
if isinstance(media_content, dict):
|
|
|
134 |
logging.debug(f"Media content keys: {media_content.keys()}")
|
135 |
if 'content' in media_content:
|
136 |
try:
|
@@ -168,7 +202,7 @@ def save_chat_history_to_db_wrapper(chatbot, conversation_id, media_content):
|
|
168 |
|
169 |
# Generate a unique conversation name using media_id and current timestamp
|
170 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
171 |
-
conversation_name = f"
|
172 |
|
173 |
new_conversation_id = save_chat_history_to_database(chatbot, conversation_id, media_id, media_name,
|
174 |
conversation_name)
|
|
|
19 |
from App_Function_Libraries.LLM_API_Calls_Local import chat_with_aphrodite, chat_with_local_llm, chat_with_ollama, \
|
20 |
chat_with_kobold, chat_with_llama, chat_with_oobabooga, chat_with_tabbyapi, chat_with_vllm, chat_with_custom_openai
|
21 |
from App_Function_Libraries.DB.SQLite_DB import load_media_content
|
22 |
+
from App_Function_Libraries.Utils.Utils import generate_unique_filename, load_and_log_configs
|
23 |
+
|
24 |
+
|
25 |
#
|
26 |
####################################################################################################
|
27 |
#
|
28 |
# Functions:
|
29 |
|
30 |
+
|
31 |
def chat_api_call(api_endpoint, api_key, input_data, prompt, temp, system_message=None):
|
32 |
if not api_key:
|
33 |
api_key = None
|
34 |
+
model = None
|
35 |
try:
|
36 |
logging.info(f"Debug - Chat API Call - API Endpoint: {api_endpoint}")
|
37 |
logging.info(f"Debug - Chat API Call - API Key: {api_key}")
|
38 |
logging.info(f"Debug - Chat chat_api_call - API Endpoint: {api_endpoint}")
|
39 |
if api_endpoint.lower() == 'openai':
|
40 |
response = chat_with_openai(api_key, input_data, prompt, temp, system_message)
|
41 |
+
|
42 |
+
elif api_endpoint.lower() == 'anthropic':
|
43 |
+
# Retrieve the model from config
|
44 |
+
loaded_config_data = load_and_log_configs()
|
45 |
+
model = loaded_config_data['models']['anthropic'] if loaded_config_data else None
|
46 |
+
response = chat_with_anthropic(
|
47 |
+
api_key=api_key,
|
48 |
+
input_data=input_data,
|
49 |
+
model=model,
|
50 |
+
custom_prompt_arg=prompt,
|
51 |
+
system_prompt=system_message
|
52 |
+
)
|
53 |
+
|
54 |
elif api_endpoint.lower() == "cohere":
|
55 |
+
response = chat_with_cohere(
|
56 |
+
api_key,
|
57 |
+
input_data,
|
58 |
+
model=model,
|
59 |
+
custom_prompt_arg=prompt,
|
60 |
+
system_prompt=system_message,
|
61 |
+
temp=temp
|
62 |
+
)
|
63 |
+
|
64 |
elif api_endpoint.lower() == "groq":
|
65 |
response = chat_with_groq(api_key, input_data, prompt, temp, system_message)
|
66 |
+
|
67 |
elif api_endpoint.lower() == "openrouter":
|
68 |
response = chat_with_openrouter(api_key, input_data, prompt, temp, system_message)
|
69 |
+
|
70 |
elif api_endpoint.lower() == "deepseek":
|
71 |
response = chat_with_deepseek(api_key, input_data, prompt, temp, system_message)
|
72 |
+
|
73 |
elif api_endpoint.lower() == "mistral":
|
74 |
response = chat_with_mistral(api_key, input_data, prompt, temp, system_message)
|
75 |
+
|
76 |
elif api_endpoint.lower() == "llama.cpp":
|
77 |
+
response = chat_with_llama(input_data, prompt, temp, None, api_key, system_message)
|
78 |
elif api_endpoint.lower() == "kobold":
|
79 |
response = chat_with_kobold(input_data, api_key, prompt, temp, system_message)
|
80 |
+
|
81 |
elif api_endpoint.lower() == "ooba":
|
82 |
response = chat_with_oobabooga(input_data, api_key, prompt, temp, system_message)
|
83 |
+
|
84 |
elif api_endpoint.lower() == "tabbyapi":
|
85 |
response = chat_with_tabbyapi(input_data, prompt, temp, system_message)
|
86 |
+
|
87 |
elif api_endpoint.lower() == "vllm":
|
88 |
response = chat_with_vllm(input_data, prompt, system_message)
|
89 |
+
|
90 |
elif api_endpoint.lower() == "local-llm":
|
91 |
response = chat_with_local_llm(input_data, prompt, temp, system_message)
|
92 |
+
|
93 |
elif api_endpoint.lower() == "huggingface":
|
94 |
response = chat_with_huggingface(api_key, input_data, prompt, temp) # , system_message)
|
95 |
+
|
96 |
elif api_endpoint.lower() == "ollama":
|
97 |
+
response = chat_with_ollama(input_data, prompt, None, api_key, temp, system_message)
|
98 |
+
|
99 |
elif api_endpoint.lower() == "aphrodite":
|
100 |
response = chat_with_aphrodite(input_data, prompt, temp, system_message)
|
101 |
+
|
102 |
elif api_endpoint.lower() == "custom-openai-api":
|
103 |
response = chat_with_custom_openai(api_key, input_data, prompt, temp, system_message)
|
104 |
+
|
105 |
else:
|
106 |
raise ValueError(f"Unsupported API endpoint: {api_endpoint}")
|
107 |
|
|
|
133 |
# logging.debug(f"Debug - Chat Function - Combined Content: {combined_content[:500]}...")
|
134 |
|
135 |
# Prepare the input for the API
|
136 |
+
input_data = f"{combined_content}\n\n" if combined_content else ""
|
137 |
+
for old_message, old_response in history:
|
138 |
+
input_data += f"{old_message}\nAssistant: {old_response}\n\n"
|
139 |
+
input_data += f"{message}\n"
|
|
|
|
|
140 |
|
141 |
if system_message:
|
142 |
print(f"System message: {system_message}")
|
|
|
144 |
temperature = float(temperature) if temperature else 0.7
|
145 |
temp = temperature
|
146 |
|
147 |
+
logging.debug(f"Debug - Chat Function - Temperature: {temperature}")
|
148 |
logging.debug(f"Debug - Chat Function - API Key: {api_key[:10]}")
|
149 |
logging.debug(f"Debug - Chat Function - Prompt: {prompt}")
|
150 |
|
|
|
158 |
|
159 |
|
160 |
|
161 |
+
def save_chat_history_to_db_wrapper(chatbot, conversation_id, media_content, media_name=None):
|
162 |
logging.info(f"Attempting to save chat history. Media content type: {type(media_content)}")
|
163 |
try:
|
164 |
# Extract the media_id and media_name from the media_content
|
165 |
media_id = None
|
|
|
166 |
if isinstance(media_content, dict):
|
167 |
+
media_id = None
|
168 |
logging.debug(f"Media content keys: {media_content.keys()}")
|
169 |
if 'content' in media_content:
|
170 |
try:
|
|
|
202 |
|
203 |
# Generate a unique conversation name using media_id and current timestamp
|
204 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
205 |
+
conversation_name = f"{media_name}_{timestamp}"
|
206 |
|
207 |
new_conversation_id = save_chat_history_to_database(chatbot, conversation_id, media_id, media_name,
|
208 |
conversation_name)
|
App_Function_Libraries/Chunk_Lib.py
CHANGED
@@ -32,8 +32,13 @@ from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
|
32 |
#
|
33 |
# FIXME - Make sure it only downloads if it already exists, and does a check first.
|
34 |
# Ensure NLTK data is downloaded
|
35 |
-
def
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
#
|
38 |
# Load GPT2 tokenizer
|
39 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
@@ -57,6 +62,34 @@ openai_api_key = config.get('API', 'openai_api_key')
|
|
57 |
#
|
58 |
# Functions:
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def detect_language(text: str) -> str:
|
61 |
try:
|
62 |
return detect(text)
|
@@ -65,13 +98,13 @@ def detect_language(text: str) -> str:
|
|
65 |
return 'en'
|
66 |
|
67 |
|
68 |
-
def load_document(file_path):
|
69 |
-
with open(file_path, 'r') as file:
|
70 |
text = file.read()
|
71 |
-
return re.sub('
|
72 |
|
73 |
|
74 |
-
def improved_chunking_process(text: str,
|
75 |
logging.debug("Improved chunking process started...")
|
76 |
|
77 |
# Extract JSON metadata if present
|
@@ -92,9 +125,9 @@ def improved_chunking_process(text: str, custom_chunk_options: Dict[str, Any] =
|
|
92 |
text = text[len(header_text):].strip()
|
93 |
logging.debug(f"Extracted header text: {header_text}")
|
94 |
|
95 |
-
options = chunk_options.copy()
|
96 |
-
if
|
97 |
-
options.update(
|
98 |
|
99 |
chunk_method = options.get('method', 'words')
|
100 |
max_size = options.get('max_size', 2000)
|
@@ -104,32 +137,39 @@ def improved_chunking_process(text: str, custom_chunk_options: Dict[str, Any] =
|
|
104 |
if language is None:
|
105 |
language = detect_language(text)
|
106 |
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
chunks_with_metadata = []
|
110 |
total_chunks = len(chunks)
|
111 |
for i, chunk in enumerate(chunks):
|
112 |
metadata = {
|
113 |
-
'chunk_index': i,
|
114 |
'total_chunks': total_chunks,
|
115 |
'chunk_method': chunk_method,
|
116 |
'max_size': max_size,
|
117 |
'overlap': overlap,
|
118 |
'language': language,
|
119 |
-
'relative_position': i / total_chunks
|
120 |
}
|
121 |
metadata.update(json_content) # Add the extracted JSON content to metadata
|
122 |
metadata['header_text'] = header_text # Add the header text to metadata
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
chunks_with_metadata.append({
|
125 |
-
'text':
|
126 |
'metadata': metadata
|
127 |
})
|
128 |
|
129 |
return chunks_with_metadata
|
130 |
|
131 |
|
132 |
-
|
133 |
def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
|
134 |
logging.debug("Multi-level chunking process started...")
|
135 |
# First level: chunk by paragraphs
|
@@ -139,35 +179,34 @@ def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, la
|
|
139 |
chunks = []
|
140 |
for para in paragraphs:
|
141 |
if method == 'words':
|
142 |
-
chunks.extend(chunk_text_by_words(para, max_size, overlap, language))
|
143 |
elif method == 'sentences':
|
144 |
-
chunks.extend(chunk_text_by_sentences(para, max_size, overlap, language))
|
145 |
else:
|
146 |
chunks.append(para)
|
147 |
|
148 |
return chunks
|
149 |
|
150 |
|
151 |
-
|
152 |
# FIXME - ensure language detection occurs in each chunk function
|
153 |
-
def chunk_text(text: str, method: str, max_size: int, overlap: int, language: str=None) -> List[str]:
|
154 |
-
|
155 |
if method == 'words':
|
156 |
logging.debug("Chunking by words...")
|
157 |
-
return chunk_text_by_words(text, max_size, overlap, language)
|
158 |
elif method == 'sentences':
|
159 |
logging.debug("Chunking by sentences...")
|
160 |
-
return chunk_text_by_sentences(text, max_size, overlap, language)
|
161 |
elif method == 'paragraphs':
|
162 |
logging.debug("Chunking by paragraphs...")
|
163 |
-
return chunk_text_by_paragraphs(text, max_size, overlap)
|
164 |
elif method == 'tokens':
|
165 |
logging.debug("Chunking by tokens...")
|
166 |
-
return chunk_text_by_tokens(text, max_size, overlap)
|
167 |
elif method == 'semantic':
|
168 |
logging.debug("Chunking by semantic similarity...")
|
169 |
-
return semantic_chunking(text, max_size)
|
170 |
else:
|
|
|
171 |
return [text]
|
172 |
|
173 |
def determine_chunk_position(relative_position: float) -> str:
|
@@ -206,22 +245,37 @@ def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0
|
|
206 |
if language is None:
|
207 |
language = detect_language(text)
|
208 |
|
209 |
-
nltk.download('punkt', quiet=True)
|
210 |
-
|
211 |
if language.startswith('zh'): # Chinese
|
212 |
import jieba
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
elif language == 'ja': # Japanese
|
215 |
import fugashi
|
216 |
tagger = fugashi.Tagger()
|
217 |
-
|
|
|
|
|
218 |
else: # Default to NLTK for other languages
|
219 |
-
|
|
|
|
|
|
|
|
|
220 |
|
221 |
chunks = []
|
|
|
|
|
222 |
for i in range(0, len(sentences), max_sentences - overlap):
|
223 |
-
|
|
|
|
|
|
|
224 |
chunks.append(chunk)
|
|
|
|
|
225 |
return post_process_chunks(chunks)
|
226 |
|
227 |
|
@@ -258,6 +312,16 @@ def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) ->
|
|
258 |
chunks.append(' '.join(current_chunk))
|
259 |
|
260 |
return post_process_chunks(chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
|
263 |
def post_process_chunks(chunks: List[str]) -> List[str]:
|
@@ -266,35 +330,35 @@ def post_process_chunks(chunks: List[str]) -> List[str]:
|
|
266 |
|
267 |
# FIXME - F
|
268 |
def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic",
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
except ValueError as e:
|
296 |
-
logging.error(f"Chunk not found in full_text: {chunk[:50]}... Full text length: {len(full_text)}")
|
297 |
-
raise
|
298 |
|
299 |
|
300 |
def process_document_with_metadata(text: str, chunk_options: Dict[str, Any],
|
@@ -308,27 +372,33 @@ def process_document_with_metadata(text: str, chunk_options: Dict[str, Any],
|
|
308 |
|
309 |
|
310 |
# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
|
311 |
-
def chunk_text_hybrid(text, max_tokens=1000):
|
312 |
logging.debug("chunk_text_hybrid...")
|
313 |
-
sentences =
|
314 |
chunks = []
|
315 |
current_chunk = []
|
316 |
current_length = 0
|
317 |
|
318 |
for sentence in sentences:
|
319 |
tokens = tokenizer.encode(sentence)
|
320 |
-
if current_length + len(tokens)
|
321 |
-
current_chunk.append(sentence)
|
322 |
-
current_length += len(tokens)
|
323 |
-
else:
|
324 |
chunks.append(' '.join(current_chunk))
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
if current_chunk:
|
329 |
chunks.append(' '.join(current_chunk))
|
330 |
|
331 |
-
return chunks
|
332 |
|
333 |
|
334 |
# Thanks openai
|
@@ -340,21 +410,22 @@ def chunk_on_delimiter(input_string: str,
|
|
340 |
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
|
341 |
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
|
342 |
if dropped_chunk_count > 0:
|
343 |
-
|
344 |
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
|
345 |
return combined_chunks
|
346 |
|
347 |
|
348 |
|
349 |
|
350 |
-
#
|
351 |
-
def recursive_summarize_chunks(chunks, summarize_func, custom_prompt
|
|
|
352 |
logging.debug("recursive_summarize_chunks...")
|
353 |
summarized_chunks = []
|
354 |
current_summary = ""
|
355 |
|
356 |
-
logging.debug(f"
|
357 |
-
logging.debug(f"
|
358 |
for i, chunk in enumerate(chunks):
|
359 |
if i == 0:
|
360 |
current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt)
|
@@ -406,20 +477,20 @@ Natural language processing has its roots in the 1950s. Already in 1950, Alan Tu
|
|
406 |
#
|
407 |
|
408 |
# Chunk text into segments based on semantic similarity
|
409 |
-
def count_units(text, unit='words'):
|
410 |
if unit == 'words':
|
411 |
return len(text.split())
|
412 |
elif unit == 'tokens':
|
413 |
-
return len(
|
414 |
elif unit == 'characters':
|
415 |
return len(text)
|
416 |
else:
|
417 |
raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")
|
418 |
|
419 |
|
420 |
-
|
|
|
421 |
logging.debug("semantic_chunking...")
|
422 |
-
nltk.download('punkt', quiet=True)
|
423 |
sentences = sent_tokenize(text)
|
424 |
vectorizer = TfidfVectorizer()
|
425 |
sentence_vectors = vectorizer.fit_transform(sentences)
|
@@ -432,9 +503,9 @@ def semantic_chunking(text, max_chunk_size=2000, unit='words'):
|
|
432 |
sentence_size = count_units(sentence, unit)
|
433 |
if current_size + sentence_size > max_chunk_size and current_chunk:
|
434 |
chunks.append(' '.join(current_chunk))
|
435 |
-
|
436 |
-
current_chunk = current_chunk[-3:]
|
437 |
-
current_size =
|
438 |
|
439 |
current_chunk.append(sentence)
|
440 |
current_size += sentence_size
|
@@ -445,9 +516,8 @@ def semantic_chunking(text, max_chunk_size=2000, unit='words'):
|
|
445 |
similarity = cosine_similarity(current_vector, next_vector)[0][0]
|
446 |
if similarity < 0.5 and current_size >= max_chunk_size // 2:
|
447 |
chunks.append(' '.join(current_chunk))
|
448 |
-
overlap_size = count_units(' '.join(current_chunk[-3:]), unit)
|
449 |
current_chunk = current_chunk[-3:]
|
450 |
-
current_size =
|
451 |
|
452 |
if current_chunk:
|
453 |
chunks.append(' '.join(current_chunk))
|
@@ -455,7 +525,7 @@ def semantic_chunking(text, max_chunk_size=2000, unit='words'):
|
|
455 |
return chunks
|
456 |
|
457 |
|
458 |
-
def semantic_chunk_long_file(file_path, max_chunk_size=1000, overlap=100, unit='words'):
|
459 |
logging.debug("semantic_chunk_long_file...")
|
460 |
try:
|
461 |
with open(file_path, 'r', encoding='utf-8') as file:
|
@@ -510,6 +580,162 @@ def chunk_for_embedding(text: str, file_name: str, custom_chunk_options: Dict[st
|
|
510 |
#######################################################################################################################
|
511 |
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
#######################################################################################################################
|
514 |
#
|
515 |
# OpenAI Rolling Summarization
|
@@ -530,45 +756,38 @@ def get_chat_completion(messages, model='gpt-4-turbo'):
|
|
530 |
def combine_chunks_with_no_minimum(
|
531 |
chunks: List[str],
|
532 |
max_tokens: int,
|
533 |
-
chunk_delimiter="\n\n",
|
534 |
header: Optional[str] = None,
|
535 |
-
add_ellipsis_for_overflow=False,
|
536 |
) -> Tuple[List[str], List[List[int]], int]:
|
537 |
dropped_chunk_count = 0
|
538 |
output = [] # list to hold the final combined chunks
|
539 |
output_indices = [] # list to hold the indices of the final combined chunks
|
540 |
-
candidate =
|
541 |
-
[] if header is None else [header]
|
542 |
-
) # list to hold the current combined chunk candidate
|
543 |
candidate_indices = []
|
544 |
for chunk_i, chunk in enumerate(chunks):
|
545 |
-
chunk_with_header = [chunk] if header
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
if (
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
dropped_chunk_count += 1
|
556 |
-
continue # this case would break downstream assumptions
|
557 |
-
# estimate token count with the current chunk added
|
558 |
-
# FIXME MAKE NOT OPENAI SPECIFIC
|
559 |
-
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
|
560 |
-
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
|
561 |
-
if extended_candidate_token_count > max_tokens:
|
562 |
-
output.append(chunk_delimiter.join(candidate))
|
563 |
-
output_indices.append(candidate_indices)
|
564 |
-
candidate = chunk_with_header # re-initialize candidate
|
565 |
-
candidate_indices = [chunk_i]
|
566 |
-
# otherwise keep extending the candidate
|
567 |
else:
|
568 |
-
candidate.
|
569 |
candidate_indices.append(chunk_i)
|
570 |
-
|
571 |
-
if
|
572 |
output.append(chunk_delimiter.join(candidate))
|
573 |
output_indices.append(candidate_indices)
|
574 |
return output, output_indices, dropped_chunk_count
|
@@ -576,27 +795,25 @@ def combine_chunks_with_no_minimum(
|
|
576 |
|
577 |
def rolling_summarize(text: str,
|
578 |
detail: float = 0,
|
579 |
-
model: str = 'gpt-
|
580 |
additional_instructions: Optional[str] = None,
|
581 |
minimum_chunk_size: Optional[int] = 500,
|
582 |
chunk_delimiter: str = ".",
|
583 |
-
summarize_recursively=False,
|
584 |
-
verbose=False):
|
585 |
"""
|
586 |
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
|
587 |
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
|
588 |
|
589 |
Parameters:
|
590 |
- text (str): The text to be summarized.
|
591 |
-
- detail (float, optional): A value between 0 and 1
|
592 |
-
|
593 |
-
|
594 |
-
-
|
595 |
-
|
596 |
-
chunks. Defaults to 500.
|
597 |
-
- chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".".
|
598 |
-
- summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context.
|
599 |
- verbose (bool, optional): If True, prints detailed information about the chunking process.
|
|
|
600 |
Returns:
|
601 |
- str: The final compiled summary of the text.
|
602 |
|
@@ -606,31 +823,29 @@ def rolling_summarize(text: str,
|
|
606 |
summarization process. The function returns a compiled summary of all chunks.
|
607 |
"""
|
608 |
|
609 |
-
#
|
610 |
-
assert 0 <= detail <= 1
|
611 |
|
612 |
-
#
|
613 |
-
|
|
|
614 |
min_chunks = 1
|
615 |
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
|
616 |
|
617 |
-
#
|
618 |
-
|
619 |
-
document_length = len(openai_tokenize(text))
|
620 |
-
chunk_size = max(minimum_chunk_size, document_length // num_chunks)
|
621 |
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
|
622 |
if verbose:
|
623 |
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
|
624 |
-
|
625 |
-
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")
|
626 |
|
627 |
-
#
|
628 |
system_message_content = "Rewrite this text in summarized form."
|
629 |
-
if additional_instructions
|
630 |
system_message_content += f"\n\n{additional_instructions}"
|
631 |
|
632 |
accumulated_summaries = []
|
633 |
-
for i, chunk in enumerate(tqdm(text_chunks)):
|
634 |
if summarize_recursively and accumulated_summaries:
|
635 |
# Combine previous summary with current chunk for recursive summarization
|
636 |
combined_text = accumulated_summaries[-1] + "\n\n" + chunk
|
@@ -658,8 +873,8 @@ def rolling_summarize(text: str,
|
|
658 |
|
659 |
def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
|
660 |
logging.debug("chunk_ebook_by_chapters")
|
661 |
-
max_chunk_size = chunk_options.get('max_size', 300)
|
662 |
-
overlap = chunk_options.get('overlap', 0)
|
663 |
custom_pattern = chunk_options.get('custom_chapter_pattern', None)
|
664 |
|
665 |
# List of chapter heading patterns to try, in order
|
@@ -685,7 +900,13 @@ def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Di
|
|
685 |
|
686 |
# If no chapters found, return the entire content as one chunk
|
687 |
if not chapter_positions:
|
688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
689 |
|
690 |
# Split content into chapters
|
691 |
chunks = []
|
@@ -696,7 +917,7 @@ def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Di
|
|
696 |
|
697 |
# Apply overlap if specified
|
698 |
if overlap > 0 and i > 0:
|
699 |
-
overlap_start = max(0,
|
700 |
chapter = text[overlap_start:end]
|
701 |
|
702 |
chunks.append(chapter)
|
@@ -705,52 +926,19 @@ def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Di
|
|
705 |
processed_chunks = post_process_chunks(chunks)
|
706 |
|
707 |
# Add metadata to chunks
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
|
713 |
-
|
714 |
-
# if __name__ == "__main__":
|
715 |
-
# sample_ebook_content = """
|
716 |
-
# # Chapter 1: Introduction
|
717 |
-
#
|
718 |
-
# This is the introduction.
|
719 |
-
#
|
720 |
-
# ## Section 1.1
|
721 |
-
#
|
722 |
-
# Some content here.
|
723 |
-
#
|
724 |
-
# # Chapter 2: Main Content
|
725 |
-
#
|
726 |
-
# This is the main content.
|
727 |
-
#
|
728 |
-
# ## Section 2.1
|
729 |
-
#
|
730 |
-
# More content here.
|
731 |
-
#
|
732 |
-
# CHAPTER THREE
|
733 |
-
#
|
734 |
-
# This is the third chapter.
|
735 |
-
#
|
736 |
-
# 4. Fourth Chapter
|
737 |
-
#
|
738 |
-
# This is the fourth chapter.
|
739 |
-
# """
|
740 |
-
#
|
741 |
-
# chunk_options = {
|
742 |
-
# 'method': 'chapters',
|
743 |
-
# 'max_size': 500,
|
744 |
-
# 'overlap': 50,
|
745 |
-
# 'custom_chapter_pattern': r'^CHAPTER\s+[A-Z]+' # Custom pattern for 'CHAPTER THREE' style
|
746 |
-
# }
|
747 |
-
#
|
748 |
-
# chunked_chapters = improved_chunking_process(sample_ebook_content, chunk_options)
|
749 |
-
#
|
750 |
-
# for i, chunk in enumerate(chunked_chapters, 1):
|
751 |
-
# print(f"Chunk {i}:")
|
752 |
-
# print(chunk['text'])
|
753 |
-
# print(f"Metadata: {chunk['metadata']}\n")
|
754 |
|
755 |
#
|
756 |
# End of ebook chapter chunking
|
@@ -761,13 +949,14 @@ def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Di
|
|
761 |
# Functions for adapative chunking:
|
762 |
|
763 |
# FIXME - punkt
|
764 |
-
def adaptive_chunk_size(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> int:
|
765 |
-
# Ensure NLTK data is downloaded
|
766 |
-
nltk.download('punkt', quiet=True)
|
767 |
|
|
|
768 |
# Tokenize the text into sentences
|
769 |
sentences = sent_tokenize(text)
|
770 |
|
|
|
|
|
|
|
771 |
# Calculate average sentence length
|
772 |
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
|
773 |
|
|
|
32 |
#
|
33 |
# FIXME - Make sure it only downloads if it already exists, and does a check first.
|
34 |
# Ensure NLTK data is downloaded
|
35 |
+
def ensure_nltk_data():
|
36 |
+
try:
|
37 |
+
nltk.data.find('tokenizers/punkt')
|
38 |
+
except LookupError:
|
39 |
+
nltk.download('punkt')
|
40 |
+
ensure_nltk_data()
|
41 |
+
|
42 |
#
|
43 |
# Load GPT2 tokenizer
|
44 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
62 |
#
|
63 |
# Functions:
|
64 |
|
65 |
+
# Create a chunking class for refactoring FIXME
|
66 |
+
# class Chunker:
|
67 |
+
# def __init__(self, tokenizer: GPT2Tokenizer):
|
68 |
+
# self.tokenizer = tokenizer
|
69 |
+
#
|
70 |
+
# def detect_language(self, text: str) -> str:
|
71 |
+
# try:
|
72 |
+
# return detect(text)
|
73 |
+
# except:
|
74 |
+
# return 'en'
|
75 |
+
#
|
76 |
+
# def chunk_text(self, text: str, method: str, max_size: int, overlap: int, language: str = None) -> List[str]:
|
77 |
+
# if language is None:
|
78 |
+
# language = self.detect_language(text)
|
79 |
+
#
|
80 |
+
# if method == 'words':
|
81 |
+
# return self.chunk_text_by_words(text, max_size, overlap, language)
|
82 |
+
# elif method == 'sentences':
|
83 |
+
# return self.chunk_text_by_sentences(text, max_size, overlap, language)
|
84 |
+
# elif method == 'paragraphs':
|
85 |
+
# return self.chunk_text_by_paragraphs(text, max_size, overlap)
|
86 |
+
# elif method == 'tokens':
|
87 |
+
# return self.chunk_text_by_tokens(text, max_size, overlap, language)
|
88 |
+
# elif method == 'semantic':
|
89 |
+
# return self.semantic_chunking(text, max_size)
|
90 |
+
# else:
|
91 |
+
# return [text]
|
92 |
+
|
93 |
def detect_language(text: str) -> str:
|
94 |
try:
|
95 |
return detect(text)
|
|
|
98 |
return 'en'
|
99 |
|
100 |
|
101 |
+
def load_document(file_path: str) -> str:
|
102 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
103 |
text = file.read()
|
104 |
+
return re.sub(r'\s+', ' ', text).strip()
|
105 |
|
106 |
|
107 |
+
def improved_chunking_process(text: str, chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
108 |
logging.debug("Improved chunking process started...")
|
109 |
|
110 |
# Extract JSON metadata if present
|
|
|
125 |
text = text[len(header_text):].strip()
|
126 |
logging.debug(f"Extracted header text: {header_text}")
|
127 |
|
128 |
+
options = chunk_options.copy() if chunk_options else {}
|
129 |
+
if chunk_options:
|
130 |
+
options.update(chunk_options)
|
131 |
|
132 |
chunk_method = options.get('method', 'words')
|
133 |
max_size = options.get('max_size', 2000)
|
|
|
137 |
if language is None:
|
138 |
language = detect_language(text)
|
139 |
|
140 |
+
if chunk_method == 'json':
|
141 |
+
chunks = chunk_text_by_json(text, max_size=max_size, overlap=overlap)
|
142 |
+
else:
|
143 |
+
chunks = chunk_text(text, chunk_method, max_size, overlap, language)
|
144 |
|
145 |
chunks_with_metadata = []
|
146 |
total_chunks = len(chunks)
|
147 |
for i, chunk in enumerate(chunks):
|
148 |
metadata = {
|
149 |
+
'chunk_index': i + 1,
|
150 |
'total_chunks': total_chunks,
|
151 |
'chunk_method': chunk_method,
|
152 |
'max_size': max_size,
|
153 |
'overlap': overlap,
|
154 |
'language': language,
|
155 |
+
'relative_position': (i + 1) / total_chunks
|
156 |
}
|
157 |
metadata.update(json_content) # Add the extracted JSON content to metadata
|
158 |
metadata['header_text'] = header_text # Add the header text to metadata
|
159 |
|
160 |
+
if chunk_method == 'json':
|
161 |
+
chunk_text_content = json.dumps(chunk['json'], ensure_ascii=False)
|
162 |
+
else:
|
163 |
+
chunk_text_content = chunk
|
164 |
+
|
165 |
chunks_with_metadata.append({
|
166 |
+
'text': chunk_text_content,
|
167 |
'metadata': metadata
|
168 |
})
|
169 |
|
170 |
return chunks_with_metadata
|
171 |
|
172 |
|
|
|
173 |
def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
|
174 |
logging.debug("Multi-level chunking process started...")
|
175 |
# First level: chunk by paragraphs
|
|
|
179 |
chunks = []
|
180 |
for para in paragraphs:
|
181 |
if method == 'words':
|
182 |
+
chunks.extend(chunk_text_by_words(para, max_words=max_size, overlap=overlap, language=language))
|
183 |
elif method == 'sentences':
|
184 |
+
chunks.extend(chunk_text_by_sentences(para, max_sentences=max_size, overlap=overlap, language=language))
|
185 |
else:
|
186 |
chunks.append(para)
|
187 |
|
188 |
return chunks
|
189 |
|
190 |
|
|
|
191 |
# FIXME - ensure language detection occurs in each chunk function
|
192 |
+
def chunk_text(text: str, method: str, max_size: int, overlap: int, language: str = None) -> List[str]:
|
|
|
193 |
if method == 'words':
|
194 |
logging.debug("Chunking by words...")
|
195 |
+
return chunk_text_by_words(text, max_words=max_size, overlap=overlap, language=language)
|
196 |
elif method == 'sentences':
|
197 |
logging.debug("Chunking by sentences...")
|
198 |
+
return chunk_text_by_sentences(text, max_sentences=max_size, overlap=overlap, language=language)
|
199 |
elif method == 'paragraphs':
|
200 |
logging.debug("Chunking by paragraphs...")
|
201 |
+
return chunk_text_by_paragraphs(text, max_paragraphs=max_size, overlap=overlap)
|
202 |
elif method == 'tokens':
|
203 |
logging.debug("Chunking by tokens...")
|
204 |
+
return chunk_text_by_tokens(text, max_tokens=max_size, overlap=overlap)
|
205 |
elif method == 'semantic':
|
206 |
logging.debug("Chunking by semantic similarity...")
|
207 |
+
return semantic_chunking(text, max_chunk_size=max_size)
|
208 |
else:
|
209 |
+
logging.warning(f"Unknown chunking method '{method}'. Returning full text as a single chunk.")
|
210 |
return [text]
|
211 |
|
212 |
def determine_chunk_position(relative_position: float) -> str:
|
|
|
245 |
if language is None:
|
246 |
language = detect_language(text)
|
247 |
|
|
|
|
|
248 |
if language.startswith('zh'): # Chinese
|
249 |
import jieba
|
250 |
+
# Use jieba to perform sentence segmentation
|
251 |
+
# jieba does not support sentence segmentation out of the box
|
252 |
+
# Use punctuation as delimiters
|
253 |
+
sentences = re.split(r'[。!?;]', text)
|
254 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
255 |
elif language == 'ja': # Japanese
|
256 |
import fugashi
|
257 |
tagger = fugashi.Tagger()
|
258 |
+
# Simple sentence segmentation based on punctuation
|
259 |
+
sentences = re.split(r'[。!?]', text)
|
260 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
261 |
else: # Default to NLTK for other languages
|
262 |
+
try:
|
263 |
+
sentences = sent_tokenize(text, language=language)
|
264 |
+
except LookupError:
|
265 |
+
logging.warning(f"Punkt tokenizer not found for language '{language}'. Using default 'english'.")
|
266 |
+
sentences = sent_tokenize(text, language='english')
|
267 |
|
268 |
chunks = []
|
269 |
+
previous_overlap = []
|
270 |
+
|
271 |
for i in range(0, len(sentences), max_sentences - overlap):
|
272 |
+
current_sentences = sentences[i:i + max_sentences]
|
273 |
+
if overlap > 0 and previous_overlap:
|
274 |
+
current_sentences = previous_overlap + current_sentences
|
275 |
+
chunk = ' '.join(current_sentences)
|
276 |
chunks.append(chunk)
|
277 |
+
previous_overlap = sentences[i + max_sentences - overlap:i + max_sentences] if overlap > 0 else []
|
278 |
+
|
279 |
return post_process_chunks(chunks)
|
280 |
|
281 |
|
|
|
312 |
chunks.append(' '.join(current_chunk))
|
313 |
|
314 |
return post_process_chunks(chunks)
|
315 |
+
# def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
|
316 |
+
# logging.debug("chunk_text_by_tokens...")
|
317 |
+
# # Use GPT2 tokenizer for tokenization
|
318 |
+
# tokens = tokenizer.encode(text)
|
319 |
+
# chunks = []
|
320 |
+
# for i in range(0, len(tokens), max_tokens - overlap):
|
321 |
+
# chunk_tokens = tokens[i:i + max_tokens]
|
322 |
+
# chunk = tokenizer.decode(chunk_tokens)
|
323 |
+
# chunks.append(chunk)
|
324 |
+
# return post_process_chunks(chunks)
|
325 |
|
326 |
|
327 |
def post_process_chunks(chunks: List[str]) -> List[str]:
|
|
|
330 |
|
331 |
# FIXME - F
|
332 |
def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic",
|
333 |
+
chapter_number: Optional[int] = None,
|
334 |
+
chapter_pattern: Optional[str] = None,
|
335 |
+
language: str = None) -> Dict[str, Any]:
|
336 |
+
"""
|
337 |
+
Generate metadata for a chunk based on its position in the full text.
|
338 |
+
"""
|
339 |
+
chunk_length = len(chunk)
|
340 |
+
start_index = full_text.find(chunk)
|
341 |
+
end_index = start_index + chunk_length if start_index != -1 else None
|
342 |
+
|
343 |
+
# Calculate a hash for the chunk
|
344 |
+
chunk_hash = hashlib.md5(chunk.encode()).hexdigest()
|
345 |
+
|
346 |
+
metadata = {
|
347 |
+
'start_index': start_index,
|
348 |
+
'end_index': end_index,
|
349 |
+
'word_count': len(chunk.split()),
|
350 |
+
'char_count': chunk_length,
|
351 |
+
'chunk_type': chunk_type,
|
352 |
+
'language': language,
|
353 |
+
'chunk_hash': chunk_hash,
|
354 |
+
'relative_position': start_index / len(full_text) if len(full_text) > 0 and start_index != -1 else 0
|
355 |
+
}
|
356 |
|
357 |
+
if chunk_type == "chapter":
|
358 |
+
metadata['chapter_number'] = chapter_number
|
359 |
+
metadata['chapter_pattern'] = chapter_pattern
|
360 |
|
361 |
+
return metadata
|
|
|
|
|
|
|
362 |
|
363 |
|
364 |
def process_document_with_metadata(text: str, chunk_options: Dict[str, Any],
|
|
|
372 |
|
373 |
|
374 |
# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
|
375 |
+
def chunk_text_hybrid(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
|
376 |
logging.debug("chunk_text_hybrid...")
|
377 |
+
sentences = sent_tokenize(text)
|
378 |
chunks = []
|
379 |
current_chunk = []
|
380 |
current_length = 0
|
381 |
|
382 |
for sentence in sentences:
|
383 |
tokens = tokenizer.encode(sentence)
|
384 |
+
if current_length + len(tokens) > max_tokens and current_chunk:
|
|
|
|
|
|
|
385 |
chunks.append(' '.join(current_chunk))
|
386 |
+
# Handle overlap
|
387 |
+
if overlap > 0:
|
388 |
+
overlap_tokens = tokenizer.encode(' '.join(current_chunk[-overlap:]))
|
389 |
+
current_chunk = current_chunk[-overlap:]
|
390 |
+
current_length = len(overlap_tokens)
|
391 |
+
else:
|
392 |
+
current_chunk = []
|
393 |
+
current_length = 0
|
394 |
+
|
395 |
+
current_chunk.append(sentence)
|
396 |
+
current_length += len(tokens)
|
397 |
|
398 |
if current_chunk:
|
399 |
chunks.append(' '.join(current_chunk))
|
400 |
|
401 |
+
return post_process_chunks(chunks)
|
402 |
|
403 |
|
404 |
# Thanks openai
|
|
|
410 |
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
|
411 |
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
|
412 |
if dropped_chunk_count > 0:
|
413 |
+
logging.warning(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
|
414 |
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
|
415 |
return combined_chunks
|
416 |
|
417 |
|
418 |
|
419 |
|
420 |
+
# FIXME
|
421 |
+
def recursive_summarize_chunks(chunks: List[str], summarize_func, custom_prompt: Optional[str] = None,
|
422 |
+
temp: Optional[float] = None, system_prompt: Optional[str] = None) -> List[str]:
|
423 |
logging.debug("recursive_summarize_chunks...")
|
424 |
summarized_chunks = []
|
425 |
current_summary = ""
|
426 |
|
427 |
+
logging.debug(f"Summarizing {len(chunks)} chunks recursively...")
|
428 |
+
logging.debug(f"Temperature is set to {temp}")
|
429 |
for i, chunk in enumerate(chunks):
|
430 |
if i == 0:
|
431 |
current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt)
|
|
|
477 |
#
|
478 |
|
479 |
# Chunk text into segments based on semantic similarity
|
480 |
+
def count_units(text: str, unit: str = 'words') -> int:
|
481 |
if unit == 'words':
|
482 |
return len(text.split())
|
483 |
elif unit == 'tokens':
|
484 |
+
return len(tokenizer.encode(text))
|
485 |
elif unit == 'characters':
|
486 |
return len(text)
|
487 |
else:
|
488 |
raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")
|
489 |
|
490 |
|
491 |
+
|
492 |
+
def semantic_chunking(text: str, max_chunk_size: int = 2000, unit: str = 'words') -> List[str]:
|
493 |
logging.debug("semantic_chunking...")
|
|
|
494 |
sentences = sent_tokenize(text)
|
495 |
vectorizer = TfidfVectorizer()
|
496 |
sentence_vectors = vectorizer.fit_transform(sentences)
|
|
|
503 |
sentence_size = count_units(sentence, unit)
|
504 |
if current_size + sentence_size > max_chunk_size and current_chunk:
|
505 |
chunks.append(' '.join(current_chunk))
|
506 |
+
# Use last 3 sentences for overlap
|
507 |
+
current_chunk = current_chunk[-3:]
|
508 |
+
current_size = count_units(' '.join(current_chunk), unit)
|
509 |
|
510 |
current_chunk.append(sentence)
|
511 |
current_size += sentence_size
|
|
|
516 |
similarity = cosine_similarity(current_vector, next_vector)[0][0]
|
517 |
if similarity < 0.5 and current_size >= max_chunk_size // 2:
|
518 |
chunks.append(' '.join(current_chunk))
|
|
|
519 |
current_chunk = current_chunk[-3:]
|
520 |
+
current_size = count_units(' '.join(current_chunk), unit)
|
521 |
|
522 |
if current_chunk:
|
523 |
chunks.append(' '.join(current_chunk))
|
|
|
525 |
return chunks
|
526 |
|
527 |
|
528 |
+
def semantic_chunk_long_file(file_path: str, max_chunk_size: int = 1000, overlap: int = 100, unit: str = 'words') -> Optional[List[str]]:
|
529 |
logging.debug("semantic_chunk_long_file...")
|
530 |
try:
|
531 |
with open(file_path, 'r', encoding='utf-8') as file:
|
|
|
580 |
#######################################################################################################################
|
581 |
|
582 |
|
583 |
+
#######################################################################################################################
|
584 |
+
#
|
585 |
+
# JSON Chunking
|
586 |
+
|
587 |
+
# FIXME
|
588 |
+
def chunk_text_by_json(text: str, max_size: int = 1000, overlap: int = 0) -> List[Dict[str, Any]]:
|
589 |
+
"""
|
590 |
+
Chunk JSON-formatted text into smaller JSON chunks while preserving structure.
|
591 |
+
|
592 |
+
Parameters:
|
593 |
+
- text (str): The JSON-formatted text to be chunked.
|
594 |
+
- max_size (int): Maximum number of items or characters per chunk.
|
595 |
+
- overlap (int): Number of items or characters to overlap between chunks.
|
596 |
+
|
597 |
+
Returns:
|
598 |
+
- List[Dict[str, Any]]: A list of chunks with their metadata.
|
599 |
+
"""
|
600 |
+
logging.debug("chunk_text_by_json started...")
|
601 |
+
try:
|
602 |
+
json_data = json.loads(text)
|
603 |
+
except json.JSONDecodeError as e:
|
604 |
+
logging.error(f"Invalid JSON data: {e}")
|
605 |
+
raise ValueError(f"Invalid JSON data: {e}")
|
606 |
+
|
607 |
+
# Determine if JSON data is a list or a dict
|
608 |
+
if isinstance(json_data, list):
|
609 |
+
return chunk_json_list(json_data, max_size, overlap)
|
610 |
+
elif isinstance(json_data, dict):
|
611 |
+
return chunk_json_dict(json_data, max_size, overlap)
|
612 |
+
else:
|
613 |
+
logging.error("Unsupported JSON structure. Only JSON objects and arrays are supported.")
|
614 |
+
raise ValueError("Unsupported JSON structure. Only JSON objects and arrays are supported.")
|
615 |
+
|
616 |
+
|
617 |
+
def chunk_json_list(json_list: List[Any], max_size: int, overlap: int) -> List[Dict[str, Any]]:
|
618 |
+
"""
|
619 |
+
Chunk a JSON array into smaller chunks.
|
620 |
+
|
621 |
+
Parameters:
|
622 |
+
- json_list (List[Any]): The JSON array to be chunked.
|
623 |
+
- max_size (int): Maximum number of items per chunk.
|
624 |
+
- overlap (int): Number of items to overlap between chunks.
|
625 |
+
|
626 |
+
Returns:
|
627 |
+
- List[Dict[str, Any]]: A list of JSON chunks with metadata.
|
628 |
+
"""
|
629 |
+
logging.debug("chunk_json_list started...")
|
630 |
+
chunks = []
|
631 |
+
total_items = len(json_list)
|
632 |
+
step = max_size - overlap
|
633 |
+
if step <= 0:
|
634 |
+
raise ValueError("max_size must be greater than overlap.")
|
635 |
+
|
636 |
+
for i in range(0, total_items, step):
|
637 |
+
chunk = json_list[i:i + max_size]
|
638 |
+
metadata = {
|
639 |
+
'chunk_index': i // step + 1,
|
640 |
+
'total_chunks': (total_items + step - 1) // step,
|
641 |
+
'chunk_method': 'json_list',
|
642 |
+
'max_size': max_size,
|
643 |
+
'overlap': overlap,
|
644 |
+
'relative_position': i / total_items
|
645 |
+
}
|
646 |
+
chunks.append({
|
647 |
+
'json': chunk,
|
648 |
+
'metadata': metadata
|
649 |
+
})
|
650 |
+
|
651 |
+
logging.debug(f"chunk_json_list created {len(chunks)} chunks.")
|
652 |
+
return chunks
|
653 |
+
|
654 |
+
|
655 |
+
|
656 |
+
def chunk_json_dict(json_dict: Dict[str, Any], max_size: int, overlap: int) -> List[Dict[str, Any]]:
|
657 |
+
"""
|
658 |
+
Chunk a JSON object into smaller chunks based on its 'data' key while preserving other keys like 'metadata'.
|
659 |
+
|
660 |
+
Parameters:
|
661 |
+
- json_dict (Dict[str, Any]): The JSON object to be chunked.
|
662 |
+
- max_size (int): Maximum number of key-value pairs per chunk in the 'data' section.
|
663 |
+
- overlap (int): Number of key-value pairs to overlap between chunks.
|
664 |
+
|
665 |
+
Returns:
|
666 |
+
- List[Dict[str, Any]]: A list of JSON chunks with metadata.
|
667 |
+
"""
|
668 |
+
logging.debug("chunk_json_dict started...")
|
669 |
+
|
670 |
+
# Preserve non-chunked sections
|
671 |
+
preserved_keys = ['metadata']
|
672 |
+
preserved_data = {key: value for key, value in json_dict.items() if key in preserved_keys}
|
673 |
+
|
674 |
+
# Identify the chunkable section
|
675 |
+
chunkable_key = 'data'
|
676 |
+
if chunkable_key not in json_dict or not isinstance(json_dict[chunkable_key], dict):
|
677 |
+
logging.error("No chunkable 'data' section found in JSON dictionary.")
|
678 |
+
raise ValueError("No chunkable 'data' section found in JSON dictionary.")
|
679 |
+
|
680 |
+
chunkable_data = json_dict[chunkable_key]
|
681 |
+
data_keys = list(chunkable_data.keys())
|
682 |
+
total_keys = len(data_keys)
|
683 |
+
chunks = []
|
684 |
+
step = max_size - overlap
|
685 |
+
if step <= 0:
|
686 |
+
raise ValueError("max_size must be greater than overlap.")
|
687 |
+
|
688 |
+
# Adjust the loop to prevent creating an extra chunk
|
689 |
+
for i in range(0, total_keys, step):
|
690 |
+
chunk_keys = data_keys[i:i + max_size]
|
691 |
+
|
692 |
+
# Handle overlap
|
693 |
+
if i != 0 and overlap > 0:
|
694 |
+
overlap_keys = data_keys[i - overlap:i]
|
695 |
+
chunk_keys = overlap_keys + chunk_keys
|
696 |
+
|
697 |
+
# Remove duplicate keys caused by overlap
|
698 |
+
unique_chunk_keys = []
|
699 |
+
seen_keys = set()
|
700 |
+
for key in chunk_keys:
|
701 |
+
if key not in seen_keys:
|
702 |
+
unique_chunk_keys.append(key)
|
703 |
+
seen_keys.add(key)
|
704 |
+
|
705 |
+
chunk_data = {key: chunkable_data[key] for key in unique_chunk_keys}
|
706 |
+
|
707 |
+
metadata = {
|
708 |
+
'chunk_index': (i // step) + 1,
|
709 |
+
'total_chunks': (total_keys + step - 1) // step,
|
710 |
+
'chunk_method': 'json_dict',
|
711 |
+
'max_size': max_size,
|
712 |
+
'overlap': overlap,
|
713 |
+
'language': 'english', # Assuming English; modify as needed
|
714 |
+
'relative_position': (i // step + 1) / ((total_keys + step - 1) // step)
|
715 |
+
}
|
716 |
+
|
717 |
+
# Merge preserved data into metadata
|
718 |
+
metadata.update(preserved_data.get('metadata', {}))
|
719 |
+
|
720 |
+
# Create the chunk with preserved data
|
721 |
+
chunk = {
|
722 |
+
'metadata': preserved_data,
|
723 |
+
'data': chunk_data
|
724 |
+
}
|
725 |
+
|
726 |
+
chunks.append({
|
727 |
+
'json': chunk,
|
728 |
+
'metadata': metadata
|
729 |
+
})
|
730 |
+
|
731 |
+
logging.debug(f"chunk_json_dict created {len(chunks)} chunks.")
|
732 |
+
return chunks
|
733 |
+
|
734 |
+
|
735 |
+
#
|
736 |
+
# End of JSON Chunking
|
737 |
+
#######################################################################################################################
|
738 |
+
|
739 |
#######################################################################################################################
|
740 |
#
|
741 |
# OpenAI Rolling Summarization
|
|
|
756 |
def combine_chunks_with_no_minimum(
|
757 |
chunks: List[str],
|
758 |
max_tokens: int,
|
759 |
+
chunk_delimiter: str = "\n\n",
|
760 |
header: Optional[str] = None,
|
761 |
+
add_ellipsis_for_overflow: bool = False,
|
762 |
) -> Tuple[List[str], List[List[int]], int]:
|
763 |
dropped_chunk_count = 0
|
764 |
output = [] # list to hold the final combined chunks
|
765 |
output_indices = [] # list to hold the indices of the final combined chunks
|
766 |
+
candidate = [header] if header else [] # list to hold the current combined chunk candidate
|
|
|
|
|
767 |
candidate_indices = []
|
768 |
for chunk_i, chunk in enumerate(chunks):
|
769 |
+
chunk_with_header = [chunk] if not header else [header, chunk]
|
770 |
+
combined_text = chunk_delimiter.join(candidate + chunk_with_header)
|
771 |
+
token_count = len(tokenizer.encode(combined_text))
|
772 |
+
if token_count > max_tokens:
|
773 |
+
if add_ellipsis_for_overflow and len(candidate) > 0:
|
774 |
+
ellipsis_text = chunk_delimiter.join(candidate + ["..."])
|
775 |
+
if len(tokenizer.encode(ellipsis_text)) <= max_tokens:
|
776 |
+
candidate = candidate + ["..."]
|
777 |
+
dropped_chunk_count += 1
|
778 |
+
if len(candidate) > 0:
|
779 |
+
output.append(chunk_delimiter.join(candidate))
|
780 |
+
output_indices.append(candidate_indices)
|
781 |
+
candidate = chunk_with_header
|
782 |
+
candidate_indices = [chunk_i]
|
783 |
+
else:
|
784 |
+
logging.warning(f"Single chunk at index {chunk_i} exceeds max_tokens and will be dropped.")
|
785 |
dropped_chunk_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
786 |
else:
|
787 |
+
candidate.extend(chunk_with_header)
|
788 |
candidate_indices.append(chunk_i)
|
789 |
+
|
790 |
+
if candidate:
|
791 |
output.append(chunk_delimiter.join(candidate))
|
792 |
output_indices.append(candidate_indices)
|
793 |
return output, output_indices, dropped_chunk_count
|
|
|
795 |
|
796 |
def rolling_summarize(text: str,
|
797 |
detail: float = 0,
|
798 |
+
model: str = 'gpt-4o',
|
799 |
additional_instructions: Optional[str] = None,
|
800 |
minimum_chunk_size: Optional[int] = 500,
|
801 |
chunk_delimiter: str = ".",
|
802 |
+
summarize_recursively: bool = False,
|
803 |
+
verbose: bool = False) -> str:
|
804 |
"""
|
805 |
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
|
806 |
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
|
807 |
|
808 |
Parameters:
|
809 |
- text (str): The text to be summarized.
|
810 |
+
- detail (float, optional): A value between 0 and 1 indicating the desired level of detail in the summary.
|
811 |
+
- additional_instructions (Optional[str], optional): Additional instructions for the model.
|
812 |
+
- minimum_chunk_size (Optional[int], optional): The minimum size for text chunks.
|
813 |
+
- chunk_delimiter (str, optional): The delimiter used to split the text into chunks.
|
814 |
+
- summarize_recursively (bool, optional): If True, summaries are generated recursively.
|
|
|
|
|
|
|
815 |
- verbose (bool, optional): If True, prints detailed information about the chunking process.
|
816 |
+
|
817 |
Returns:
|
818 |
- str: The final compiled summary of the text.
|
819 |
|
|
|
823 |
summarization process. The function returns a compiled summary of all chunks.
|
824 |
"""
|
825 |
|
826 |
+
# Check detail is set correctly
|
827 |
+
assert 0 <= detail <= 1, "Detail must be between 0 and 1."
|
828 |
|
829 |
+
# Interpolate the number of chunks based on the detail parameter
|
830 |
+
text_length = len(tokenizer.encode(text))
|
831 |
+
max_chunks = text_length // minimum_chunk_size if minimum_chunk_size else 10
|
832 |
min_chunks = 1
|
833 |
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
|
834 |
|
835 |
+
# Adjust chunk_size based on interpolated number of chunks
|
836 |
+
chunk_size = max(minimum_chunk_size, text_length // num_chunks) if num_chunks else text_length
|
|
|
|
|
837 |
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
|
838 |
if verbose:
|
839 |
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
|
840 |
+
print(f"Chunk lengths are {[len(tokenizer.encode(x)) for x in text_chunks]} tokens.")
|
|
|
841 |
|
842 |
+
# Set system message
|
843 |
system_message_content = "Rewrite this text in summarized form."
|
844 |
+
if additional_instructions:
|
845 |
system_message_content += f"\n\n{additional_instructions}"
|
846 |
|
847 |
accumulated_summaries = []
|
848 |
+
for i, chunk in enumerate(tqdm(text_chunks, desc="Summarizing chunks")):
|
849 |
if summarize_recursively and accumulated_summaries:
|
850 |
# Combine previous summary with current chunk for recursive summarization
|
851 |
combined_text = accumulated_summaries[-1] + "\n\n" + chunk
|
|
|
873 |
|
874 |
def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
|
875 |
logging.debug("chunk_ebook_by_chapters")
|
876 |
+
max_chunk_size = int(chunk_options.get('max_size', 300))
|
877 |
+
overlap = int(chunk_options.get('overlap', 0))
|
878 |
custom_pattern = chunk_options.get('custom_chapter_pattern', None)
|
879 |
|
880 |
# List of chapter heading patterns to try, in order
|
|
|
900 |
|
901 |
# If no chapters found, return the entire content as one chunk
|
902 |
if not chapter_positions:
|
903 |
+
metadata = get_chunk_metadata(
|
904 |
+
chunk=text,
|
905 |
+
full_text=text,
|
906 |
+
chunk_type="whole_document",
|
907 |
+
language=chunk_options.get('language', 'english')
|
908 |
+
)
|
909 |
+
return [{'text': text, 'metadata': metadata}]
|
910 |
|
911 |
# Split content into chapters
|
912 |
chunks = []
|
|
|
917 |
|
918 |
# Apply overlap if specified
|
919 |
if overlap > 0 and i > 0:
|
920 |
+
overlap_start = max(0, chapter_positions[i] - overlap)
|
921 |
chapter = text[overlap_start:end]
|
922 |
|
923 |
chunks.append(chapter)
|
|
|
926 |
processed_chunks = post_process_chunks(chunks)
|
927 |
|
928 |
# Add metadata to chunks
|
929 |
+
chunks_with_metadata = []
|
930 |
+
for i, chunk in enumerate(processed_chunks):
|
931 |
+
metadata = get_chunk_metadata(
|
932 |
+
chunk=chunk,
|
933 |
+
full_text=text,
|
934 |
+
chunk_type="chapter",
|
935 |
+
chapter_number=i + 1,
|
936 |
+
chapter_pattern=used_pattern,
|
937 |
+
language=chunk_options.get('language', 'english')
|
938 |
+
)
|
939 |
+
chunks_with_metadata.append({'text': chunk, 'metadata': metadata})
|
940 |
|
941 |
+
return chunks_with_metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
942 |
|
943 |
#
|
944 |
# End of ebook chapter chunking
|
|
|
949 |
# Functions for adapative chunking:
|
950 |
|
951 |
# FIXME - punkt
|
|
|
|
|
|
|
952 |
|
953 |
+
def adaptive_chunk_size(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> int:
|
954 |
# Tokenize the text into sentences
|
955 |
sentences = sent_tokenize(text)
|
956 |
|
957 |
+
if not sentences:
|
958 |
+
return base_size
|
959 |
+
|
960 |
# Calculate average sentence length
|
961 |
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
|
962 |
|
App_Function_Libraries/LLM_API_Calls.py
CHANGED
@@ -1,966 +1,1109 @@
|
|
1 |
-
# Summarization_General_Lib.py
|
2 |
-
#########################################
|
3 |
-
# General Summarization Library
|
4 |
-
# This library is used to perform summarization.
|
5 |
-
#
|
6 |
-
####
|
7 |
-
####################
|
8 |
-
# Function List
|
9 |
-
#
|
10 |
-
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
11 |
-
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
|
12 |
-
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
13 |
-
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
14 |
-
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
|
15 |
-
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
16 |
-
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
17 |
-
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
18 |
-
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
|
19 |
-
#
|
20 |
-
#
|
21 |
-
####################
|
22 |
-
#
|
23 |
-
# Import necessary libraries
|
24 |
-
import json
|
25 |
-
import logging
|
26 |
-
import os
|
27 |
-
import time
|
28 |
-
from typing import List
|
29 |
-
|
30 |
-
import requests
|
31 |
-
#
|
32 |
-
# Import 3rd-Party Libraries
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
logging.debug(f"
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
logging.debug(f"
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
logging.debug(f"OpenAI:
|
84 |
-
logging.debug(f"OpenAI:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
'
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
"
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
response_data
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
logging.error(f"OpenAI:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
logging.info("OpenAI: API key
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
logging.debug(f"OpenAI: Raw input data
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
logging.debug(f"OpenAI: Processed data
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
logging.debug(f"OpenAI:
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
'
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
"
|
202 |
-
|
203 |
-
{"role": "
|
204 |
-
|
205 |
-
|
206 |
-
"
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
logging.debug("openai: Chat
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
logging.error(f"OpenAI:
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
"
|
277 |
-
|
278 |
-
}
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
"
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
"
|
378 |
-
|
379 |
-
|
380 |
-
"
|
381 |
-
"
|
382 |
-
"
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
logging.
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
logging.
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
logging.debug(
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
if
|
740 |
-
logging.
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
logging
|
843 |
-
data
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
data
|
869 |
-
|
870 |
-
"
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
#
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
966 |
#######################################################################################################################
|
|
|
1 |
+
# Summarization_General_Lib.py
|
2 |
+
#########################################
|
3 |
+
# General Summarization Library
|
4 |
+
# This library is used to perform summarization.
|
5 |
+
#
|
6 |
+
####
|
7 |
+
####################
|
8 |
+
# Function List
|
9 |
+
#
|
10 |
+
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
11 |
+
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
|
12 |
+
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
13 |
+
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
14 |
+
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
|
15 |
+
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
16 |
+
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
17 |
+
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
18 |
+
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
|
19 |
+
#
|
20 |
+
#
|
21 |
+
####################
|
22 |
+
#
|
23 |
+
# Import necessary libraries
|
24 |
+
import json
|
25 |
+
import logging
|
26 |
+
import os
|
27 |
+
import time
|
28 |
+
from typing import List
|
29 |
+
|
30 |
+
import requests
|
31 |
+
#
|
32 |
+
# Import 3rd-Party Libraries
|
33 |
+
#
|
34 |
+
# Import Local libraries
|
35 |
+
from App_Function_Libraries.Utils.Utils import load_and_log_configs
|
36 |
+
#
|
37 |
+
#######################################################################################################################
|
38 |
+
# Function Definitions
|
39 |
+
#
|
40 |
+
|
41 |
+
#FIXME: Update to include full arguments
|
42 |
+
|
43 |
+
def extract_text_from_segments(segments):
|
44 |
+
logging.debug(f"Segments received: {segments}")
|
45 |
+
logging.debug(f"Type of segments: {type(segments)}")
|
46 |
+
|
47 |
+
text = ""
|
48 |
+
|
49 |
+
if isinstance(segments, list):
|
50 |
+
for segment in segments:
|
51 |
+
logging.debug(f"Current segment: {segment}")
|
52 |
+
logging.debug(f"Type of segment: {type(segment)}")
|
53 |
+
if 'Text' in segment:
|
54 |
+
text += segment['Text'] + " "
|
55 |
+
else:
|
56 |
+
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
|
57 |
+
else:
|
58 |
+
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
|
59 |
+
|
60 |
+
return text.strip()
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def get_openai_embeddings(input_data: str, model: str) -> List[float]:
|
65 |
+
"""
|
66 |
+
Get embeddings for the input text from OpenAI API.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
input_data (str): The input text to get embeddings for.
|
70 |
+
model (str): The model to use for generating embeddings.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
List[float]: The embeddings generated by the API.
|
74 |
+
"""
|
75 |
+
loaded_config_data = load_and_log_configs()
|
76 |
+
api_key = loaded_config_data['api_keys']['openai']
|
77 |
+
|
78 |
+
if not api_key:
|
79 |
+
logging.error("OpenAI: API key not found or is empty")
|
80 |
+
raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")
|
81 |
+
|
82 |
+
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
83 |
+
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
84 |
+
logging.debug(f"OpenAI: Using model: {model}")
|
85 |
+
|
86 |
+
headers = {
|
87 |
+
'Authorization': f'Bearer {api_key}',
|
88 |
+
'Content-Type': 'application/json'
|
89 |
+
}
|
90 |
+
|
91 |
+
request_data = {
|
92 |
+
"input": input_data,
|
93 |
+
"model": model,
|
94 |
+
}
|
95 |
+
|
96 |
+
try:
|
97 |
+
logging.debug("OpenAI: Posting request to embeddings API")
|
98 |
+
response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
|
99 |
+
logging.debug(f"Full API response data: {response}")
|
100 |
+
if response.status_code == 200:
|
101 |
+
response_data = response.json()
|
102 |
+
if 'data' in response_data and len(response_data['data']) > 0:
|
103 |
+
embedding = response_data['data'][0]['embedding']
|
104 |
+
logging.debug("OpenAI: Embeddings retrieved successfully")
|
105 |
+
return embedding
|
106 |
+
else:
|
107 |
+
logging.warning("OpenAI: Embedding data not found in the response")
|
108 |
+
raise ValueError("OpenAI: Embedding data not available in the response")
|
109 |
+
else:
|
110 |
+
logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
|
111 |
+
logging.error(f"OpenAI: Error response: {response.text}")
|
112 |
+
raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
|
113 |
+
except requests.RequestException as e:
|
114 |
+
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
115 |
+
raise ValueError(f"OpenAI: Error making API request: {str(e)}")
|
116 |
+
except Exception as e:
|
117 |
+
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
118 |
+
raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")
|
119 |
+
|
120 |
+
|
121 |
+
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
122 |
+
loaded_config_data = load_and_log_configs()
|
123 |
+
openai_api_key = api_key
|
124 |
+
try:
|
125 |
+
# API key validation
|
126 |
+
if not openai_api_key:
|
127 |
+
logging.info("OpenAI: API key not provided as parameter")
|
128 |
+
logging.info("OpenAI: Attempting to use API key from config file")
|
129 |
+
openai_api_key = loaded_config_data['api_keys']['openai']
|
130 |
+
|
131 |
+
if not openai_api_key:
|
132 |
+
logging.error("OpenAI: API key not found or is empty")
|
133 |
+
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
|
134 |
+
|
135 |
+
logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")
|
136 |
+
|
137 |
+
# Input data handling
|
138 |
+
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
|
139 |
+
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
140 |
+
|
141 |
+
if isinstance(input_data, str):
|
142 |
+
if input_data.strip().startswith('{'):
|
143 |
+
# It's likely a JSON string
|
144 |
+
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
|
145 |
+
try:
|
146 |
+
data = json.loads(input_data)
|
147 |
+
except json.JSONDecodeError as e:
|
148 |
+
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
|
149 |
+
return f"OpenAI: Error parsing JSON input: {str(e)}"
|
150 |
+
elif os.path.isfile(input_data):
|
151 |
+
logging.debug("OpenAI: Loading JSON data from file for summarization")
|
152 |
+
with open(input_data, 'r') as file:
|
153 |
+
data = json.load(file)
|
154 |
+
else:
|
155 |
+
logging.debug("OpenAI: Using provided string data for summarization")
|
156 |
+
data = input_data
|
157 |
+
else:
|
158 |
+
data = input_data
|
159 |
+
|
160 |
+
logging.debug(f"OpenAI: Processed data type: {type(data)}")
|
161 |
+
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
|
162 |
+
|
163 |
+
# Text extraction
|
164 |
+
if isinstance(data, dict):
|
165 |
+
if 'summary' in data:
|
166 |
+
logging.debug("OpenAI: Summary already exists in the loaded data")
|
167 |
+
return data['summary']
|
168 |
+
elif 'segments' in data:
|
169 |
+
text = extract_text_from_segments(data['segments'])
|
170 |
+
else:
|
171 |
+
text = json.dumps(data) # Convert dict to string if no specific format
|
172 |
+
elif isinstance(data, list):
|
173 |
+
text = extract_text_from_segments(data)
|
174 |
+
elif isinstance(data, str):
|
175 |
+
text = data
|
176 |
+
else:
|
177 |
+
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
|
178 |
+
|
179 |
+
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
|
180 |
+
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
|
181 |
+
|
182 |
+
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
183 |
+
logging.debug(f"OpenAI: Using model: {openai_model}")
|
184 |
+
|
185 |
+
headers = {
|
186 |
+
'Authorization': f'Bearer {openai_api_key}',
|
187 |
+
'Content-Type': 'application/json'
|
188 |
+
}
|
189 |
+
|
190 |
+
logging.debug(
|
191 |
+
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
|
192 |
+
logging.debug("openai: Preparing data + prompt for submittal")
|
193 |
+
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
194 |
+
if temp is None:
|
195 |
+
temp = 0.7
|
196 |
+
if system_message is None:
|
197 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
198 |
+
temp = float(temp)
|
199 |
+
data = {
|
200 |
+
"model": openai_model,
|
201 |
+
"messages": [
|
202 |
+
{"role": "system", "content": system_message},
|
203 |
+
{"role": "user", "content": openai_prompt}
|
204 |
+
],
|
205 |
+
"max_tokens": 4096,
|
206 |
+
"temperature": temp
|
207 |
+
}
|
208 |
+
|
209 |
+
logging.debug("OpenAI: Posting request")
|
210 |
+
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
211 |
+
logging.debug(f"Full API response data: {response}")
|
212 |
+
if response.status_code == 200:
|
213 |
+
response_data = response.json()
|
214 |
+
logging.debug(response_data)
|
215 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
216 |
+
chat_response = response_data['choices'][0]['message']['content'].strip()
|
217 |
+
logging.debug("openai: Chat Sent successfully")
|
218 |
+
logging.debug(f"openai: Chat response: {chat_response}")
|
219 |
+
return chat_response
|
220 |
+
else:
|
221 |
+
logging.warning("openai: Chat response not found in the response data")
|
222 |
+
return "openai: Chat not available"
|
223 |
+
else:
|
224 |
+
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
|
225 |
+
logging.error(f"OpenAI: Error response: {response.text}")
|
226 |
+
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
|
227 |
+
except json.JSONDecodeError as e:
|
228 |
+
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
|
229 |
+
return f"OpenAI: Error decoding JSON input: {str(e)}"
|
230 |
+
except requests.RequestException as e:
|
231 |
+
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
232 |
+
return f"OpenAI: Error making API request: {str(e)}"
|
233 |
+
except Exception as e:
|
234 |
+
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
235 |
+
return f"OpenAI: Unexpected error occurred: {str(e)}"
|
236 |
+
|
237 |
+
|
238 |
+
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None):
|
239 |
+
try:
|
240 |
+
loaded_config_data = load_and_log_configs()
|
241 |
+
|
242 |
+
# Check if config was loaded successfully
|
243 |
+
if loaded_config_data is None:
|
244 |
+
logging.error("Anthropic: Failed to load configuration data.")
|
245 |
+
return "Anthropic: Failed to load configuration data."
|
246 |
+
|
247 |
+
# Initialize the API key
|
248 |
+
anthropic_api_key = api_key
|
249 |
+
|
250 |
+
# API key validation
|
251 |
+
if not api_key:
|
252 |
+
logging.info("Anthropic: API key not provided as parameter")
|
253 |
+
logging.info("Anthropic: Attempting to use API key from config file")
|
254 |
+
# Ensure 'api_keys' and 'anthropic' keys exist
|
255 |
+
try:
|
256 |
+
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
|
257 |
+
logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
|
258 |
+
except (KeyError, TypeError) as e:
|
259 |
+
logging.error(f"Anthropic: Error accessing API key from config: {str(e)}")
|
260 |
+
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
|
261 |
+
|
262 |
+
if not anthropic_api_key or anthropic_api_key == "":
|
263 |
+
logging.error("Anthropic: API key not found or is empty")
|
264 |
+
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
|
265 |
+
|
266 |
+
if anthropic_api_key:
|
267 |
+
logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
|
268 |
+
else:
|
269 |
+
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
270 |
+
|
271 |
+
if system_prompt is not None:
|
272 |
+
logging.debug("Anthropic: Using provided system prompt")
|
273 |
+
pass
|
274 |
+
else:
|
275 |
+
system_prompt = "You are a helpful assistant"
|
276 |
+
logging.debug("Anthropic: Using default system prompt")
|
277 |
+
|
278 |
+
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
|
279 |
+
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
|
280 |
+
|
281 |
+
# Retrieve the model from config if not provided
|
282 |
+
if not model:
|
283 |
+
try:
|
284 |
+
anthropic_model = loaded_config_data['models']['anthropic']
|
285 |
+
logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}")
|
286 |
+
except (KeyError, TypeError) as e:
|
287 |
+
logging.error(f"Anthropic: Error accessing model from config: {str(e)}")
|
288 |
+
return "Anthropic: Model configuration not found."
|
289 |
+
else:
|
290 |
+
anthropic_model = model
|
291 |
+
logging.debug(f"Anthropic: Using provided model: {anthropic_model}")
|
292 |
+
|
293 |
+
if temp is None:
|
294 |
+
temp = 1.0
|
295 |
+
logging.debug(f"Anthropic: Using default temperature: {temp}")
|
296 |
+
|
297 |
+
headers = {
|
298 |
+
'x-api-key': anthropic_api_key,
|
299 |
+
'anthropic-version': '2023-06-01',
|
300 |
+
'Content-Type': 'application/json'
|
301 |
+
}
|
302 |
+
|
303 |
+
anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else ""
|
304 |
+
logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'")
|
305 |
+
user_message = {
|
306 |
+
"role": "user",
|
307 |
+
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
|
308 |
+
}
|
309 |
+
|
310 |
+
data = {
|
311 |
+
"model": anthropic_model,
|
312 |
+
"max_tokens": 4096, # max possible tokens to return
|
313 |
+
"messages": [user_message],
|
314 |
+
"stop_sequences": ["\n\nHuman:"],
|
315 |
+
"temperature": temp,
|
316 |
+
"top_k": 0,
|
317 |
+
"top_p": 1.0,
|
318 |
+
"metadata": {
|
319 |
+
"user_id": "example_user_id",
|
320 |
+
},
|
321 |
+
"stream": False,
|
322 |
+
"system": system_prompt
|
323 |
+
}
|
324 |
+
|
325 |
+
for attempt in range(max_retries):
|
326 |
+
try:
|
327 |
+
logging.debug("Anthropic: Posting request to API")
|
328 |
+
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
329 |
+
logging.debug(f"Anthropic: Full API response data: {response}")
|
330 |
+
|
331 |
+
# Check if the status code indicates success
|
332 |
+
if response.status_code == 200:
|
333 |
+
logging.debug("Anthropic: Post submittal successful")
|
334 |
+
response_data = response.json()
|
335 |
+
|
336 |
+
# Corrected path to access the assistant's reply
|
337 |
+
if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0:
|
338 |
+
chat_response = response_data['content'][0]['text'].strip()
|
339 |
+
logging.debug("Anthropic: Chat request successful")
|
340 |
+
print("Chat request processed successfully.")
|
341 |
+
return chat_response
|
342 |
+
else:
|
343 |
+
logging.error("Anthropic: Unexpected data structure in response.")
|
344 |
+
print("Unexpected response format from Anthropic API:", response.text)
|
345 |
+
return "Anthropic: Unexpected response format from API."
|
346 |
+
elif response.status_code == 500: # Handle internal server error specifically
|
347 |
+
logging.debug("Anthropic: Internal server error")
|
348 |
+
print("Internal server error from API. Retrying may be necessary.")
|
349 |
+
time.sleep(retry_delay)
|
350 |
+
else:
|
351 |
+
logging.debug(
|
352 |
+
f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
|
353 |
+
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
|
354 |
+
return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}"
|
355 |
+
|
356 |
+
except requests.RequestException as e:
|
357 |
+
logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
|
358 |
+
if attempt < max_retries - 1:
|
359 |
+
logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...")
|
360 |
+
time.sleep(retry_delay)
|
361 |
+
else:
|
362 |
+
return f"Anthropic: Network error: {str(e)}"
|
363 |
+
|
364 |
+
except Exception as e:
|
365 |
+
logging.error(f"Anthropic: Error in processing: {str(e)}")
|
366 |
+
return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
|
367 |
+
|
368 |
+
|
369 |
+
# Summarize with Cohere
|
370 |
+
def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None):
|
371 |
+
loaded_config_data = load_and_log_configs()
|
372 |
+
cohere_api_key = None
|
373 |
+
|
374 |
+
try:
|
375 |
+
# API key validation
|
376 |
+
if api_key:
|
377 |
+
logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
|
378 |
+
cohere_api_key = api_key
|
379 |
+
else:
|
380 |
+
logging.info("Cohere Chat: API key not provided as parameter")
|
381 |
+
logging.info("Cohere Chat: Attempting to use API key from config file")
|
382 |
+
logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
|
383 |
+
cohere_api_key = loaded_config_data['api_keys']['cohere']
|
384 |
+
if cohere_api_key:
|
385 |
+
logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
|
386 |
+
else:
|
387 |
+
logging.error("Cohere Chat: API key not found or is empty")
|
388 |
+
return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"
|
389 |
+
|
390 |
+
logging.debug(f"Cohere Chat: Loaded data: {input_data}")
|
391 |
+
logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")
|
392 |
+
|
393 |
+
# Ensure model is set
|
394 |
+
if not model:
|
395 |
+
model = loaded_config_data['models']['cohere']
|
396 |
+
logging.debug(f"Cohere Chat: Using model: {model}")
|
397 |
+
|
398 |
+
if temp is None:
|
399 |
+
temp = 0.3
|
400 |
+
else:
|
401 |
+
try:
|
402 |
+
temp = float(temp)
|
403 |
+
except ValueError:
|
404 |
+
logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3")
|
405 |
+
temp = 0.3
|
406 |
+
|
407 |
+
headers = {
|
408 |
+
'accept': 'application/json',
|
409 |
+
'content-type': 'application/json',
|
410 |
+
'Authorization': f'Bearer {cohere_api_key}'
|
411 |
+
}
|
412 |
+
|
413 |
+
# Ensure system_prompt is set
|
414 |
+
if not system_prompt:
|
415 |
+
system_prompt = "You are a helpful assistant"
|
416 |
+
logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")
|
417 |
+
|
418 |
+
cohere_prompt = input_data
|
419 |
+
if custom_prompt_arg:
|
420 |
+
cohere_prompt += f"\n\n{custom_prompt_arg}"
|
421 |
+
logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")
|
422 |
+
|
423 |
+
data = {
|
424 |
+
"model" : model,
|
425 |
+
"temperature": temp,
|
426 |
+
"messages": [
|
427 |
+
{
|
428 |
+
"role": "system",
|
429 |
+
"content": system_prompt
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"role": "user",
|
433 |
+
"content": cohere_prompt,
|
434 |
+
}
|
435 |
+
],
|
436 |
+
}
|
437 |
+
logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")
|
438 |
+
|
439 |
+
logging.debug("cohere chat: Submitting request to API endpoint")
|
440 |
+
print("cohere chat: Submitting request to API endpoint")
|
441 |
+
|
442 |
+
try:
|
443 |
+
response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data)
|
444 |
+
logging.debug(f"Cohere Chat: Raw API response: {response.text}")
|
445 |
+
except requests.RequestException as e:
|
446 |
+
logging.error(f"Cohere Chat: Error making API request: {str(e)}")
|
447 |
+
return f"Cohere Chat: Error making API request: {str(e)}"
|
448 |
+
|
449 |
+
if response.status_code == 200:
|
450 |
+
try:
|
451 |
+
response_data = response.json()
|
452 |
+
except json.JSONDecodeError:
|
453 |
+
logging.error("Cohere Chat: Failed to decode JSON response")
|
454 |
+
return "Cohere Chat: Failed to decode JSON response"
|
455 |
+
|
456 |
+
if response_data is None:
|
457 |
+
logging.error("Cohere Chat: No response data received.")
|
458 |
+
return "Cohere Chat: No response data received."
|
459 |
+
|
460 |
+
logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")
|
461 |
+
|
462 |
+
if 'message' in response_data and 'content' in response_data['message']:
|
463 |
+
content = response_data['message']['content']
|
464 |
+
if isinstance(content, list) and len(content) > 0:
|
465 |
+
# Extract text from the first content block
|
466 |
+
text = content[0].get('text', '').strip()
|
467 |
+
if text:
|
468 |
+
logging.debug("Cohere Chat: Chat request successful")
|
469 |
+
print("Cohere Chat request processed successfully.")
|
470 |
+
return text
|
471 |
+
else:
|
472 |
+
logging.error("Cohere Chat: 'text' field is empty in response content.")
|
473 |
+
return "Cohere Chat: 'text' field is empty in response content."
|
474 |
+
else:
|
475 |
+
logging.error("Cohere Chat: 'content' field is not a list or is empty.")
|
476 |
+
return "Cohere Chat: 'content' field is not a list or is empty."
|
477 |
+
else:
|
478 |
+
logging.error("Cohere Chat: 'message' or 'content' field not found in API response.")
|
479 |
+
return "Cohere Chat: 'message' or 'content' field not found in API response."
|
480 |
+
|
481 |
+
elif response.status_code == 401:
|
482 |
+
error_message = "Cohere Chat: Unauthorized - Invalid API key"
|
483 |
+
logging.warning(error_message)
|
484 |
+
print(error_message)
|
485 |
+
return error_message
|
486 |
+
|
487 |
+
else:
|
488 |
+
logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
|
489 |
+
print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
|
490 |
+
return f"Cohere Chat: API request failed: {response.text}"
|
491 |
+
|
492 |
+
except Exception as e:
|
493 |
+
logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
|
494 |
+
return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"
|
495 |
+
|
496 |
+
|
497 |
+
# https://console.groq.com/docs/quickstart
|
498 |
+
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
499 |
+
logging.debug("Groq: Summarization process starting...")
|
500 |
+
try:
|
501 |
+
logging.debug("Groq: Loading and validating configurations")
|
502 |
+
loaded_config_data = load_and_log_configs()
|
503 |
+
if loaded_config_data is None:
|
504 |
+
logging.error("Failed to load configuration data")
|
505 |
+
groq_api_key = None
|
506 |
+
else:
|
507 |
+
# Prioritize the API key passed as a parameter
|
508 |
+
if api_key and api_key.strip():
|
509 |
+
groq_api_key = api_key
|
510 |
+
logging.info("Groq: Using API key provided as parameter")
|
511 |
+
else:
|
512 |
+
# If no parameter is provided, use the key from the config
|
513 |
+
groq_api_key = loaded_config_data['api_keys'].get('groq')
|
514 |
+
if groq_api_key:
|
515 |
+
logging.info("Groq: Using API key from config file")
|
516 |
+
else:
|
517 |
+
logging.warning("Groq: No API key found in config file")
|
518 |
+
|
519 |
+
# Final check to ensure we have a valid API key
|
520 |
+
if not groq_api_key or not groq_api_key.strip():
|
521 |
+
logging.error("Anthropic: No valid API key available")
|
522 |
+
# You might want to raise an exception here or handle this case as appropriate for your application
|
523 |
+
# For example: raise ValueError("No valid Anthropic API key available")
|
524 |
+
|
525 |
+
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
|
526 |
+
|
527 |
+
# Transcript data handling & Validation
|
528 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
529 |
+
logging.debug("Groq: Loading json data for summarization")
|
530 |
+
with open(input_data, 'r') as file:
|
531 |
+
data = json.load(file)
|
532 |
+
else:
|
533 |
+
logging.debug("Groq: Using provided string data for summarization")
|
534 |
+
data = input_data
|
535 |
+
|
536 |
+
# DEBUG - Debug logging to identify sent data
|
537 |
+
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
538 |
+
logging.debug(f"Groq: Type of data: {type(data)}")
|
539 |
+
|
540 |
+
if isinstance(data, dict) and 'summary' in data:
|
541 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
542 |
+
logging.debug("Groq: Summary already exists in the loaded data")
|
543 |
+
return data['summary']
|
544 |
+
|
545 |
+
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
546 |
+
if isinstance(data, list):
|
547 |
+
segments = data
|
548 |
+
text = extract_text_from_segments(segments)
|
549 |
+
elif isinstance(data, str):
|
550 |
+
text = data
|
551 |
+
else:
|
552 |
+
raise ValueError("Groq: Invalid input data format")
|
553 |
+
|
554 |
+
# Set the model to be used
|
555 |
+
groq_model = loaded_config_data['models']['groq']
|
556 |
+
|
557 |
+
if temp is None:
|
558 |
+
temp = 0.2
|
559 |
+
temp = float(temp)
|
560 |
+
if system_message is None:
|
561 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
562 |
+
|
563 |
+
headers = {
|
564 |
+
'Authorization': f'Bearer {groq_api_key}',
|
565 |
+
'Content-Type': 'application/json'
|
566 |
+
}
|
567 |
+
|
568 |
+
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
569 |
+
logging.debug("groq: Prompt being sent is {groq_prompt}")
|
570 |
+
|
571 |
+
data = {
|
572 |
+
"messages": [
|
573 |
+
{
|
574 |
+
"role": "system",
|
575 |
+
"content": system_message,
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"role": "user",
|
579 |
+
"content": groq_prompt,
|
580 |
+
}
|
581 |
+
],
|
582 |
+
"model": groq_model,
|
583 |
+
"temperature": temp
|
584 |
+
}
|
585 |
+
|
586 |
+
logging.debug("groq: Submitting request to API endpoint")
|
587 |
+
print("groq: Submitting request to API endpoint")
|
588 |
+
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
589 |
+
|
590 |
+
response_data = response.json()
|
591 |
+
logging.debug(f"Full API response data: {response_data}")
|
592 |
+
|
593 |
+
if response.status_code == 200:
|
594 |
+
logging.debug(response_data)
|
595 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
596 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
597 |
+
logging.debug("groq: Chat request successful")
|
598 |
+
print("Groq: Chat request successful.")
|
599 |
+
return summary
|
600 |
+
else:
|
601 |
+
logging.error("Groq(chat): Expected data not found in API response.")
|
602 |
+
return "Groq(chat): Expected data not found in API response."
|
603 |
+
else:
|
604 |
+
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
605 |
+
return f"groq: API request failed: {response.text}"
|
606 |
+
|
607 |
+
except Exception as e:
|
608 |
+
logging.error("groq: Error in processing: %s", str(e))
|
609 |
+
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
610 |
+
|
611 |
+
|
612 |
+
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
613 |
+
import requests
|
614 |
+
import json
|
615 |
+
global openrouter_model, openrouter_api_key
|
616 |
+
try:
|
617 |
+
logging.debug("OpenRouter: Loading and validating configurations")
|
618 |
+
loaded_config_data = load_and_log_configs()
|
619 |
+
if loaded_config_data is None:
|
620 |
+
logging.error("Failed to load configuration data")
|
621 |
+
openrouter_api_key = None
|
622 |
+
else:
|
623 |
+
# Prioritize the API key passed as a parameter
|
624 |
+
if api_key and api_key.strip():
|
625 |
+
openrouter_api_key = api_key
|
626 |
+
logging.info("OpenRouter: Using API key provided as parameter")
|
627 |
+
else:
|
628 |
+
# If no parameter is provided, use the key from the config
|
629 |
+
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
|
630 |
+
if openrouter_api_key:
|
631 |
+
logging.info("OpenRouter: Using API key from config file")
|
632 |
+
else:
|
633 |
+
logging.warning("OpenRouter: No API key found in config file")
|
634 |
+
|
635 |
+
# Model Selection validation
|
636 |
+
logging.debug("OpenRouter: Validating model selection")
|
637 |
+
loaded_config_data = load_and_log_configs()
|
638 |
+
openrouter_model = loaded_config_data['models']['openrouter']
|
639 |
+
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
|
640 |
+
|
641 |
+
# Final check to ensure we have a valid API key
|
642 |
+
if not openrouter_api_key or not openrouter_api_key.strip():
|
643 |
+
logging.error("OpenRouter: No valid API key available")
|
644 |
+
raise ValueError("No valid Anthropic API key available")
|
645 |
+
except Exception as e:
|
646 |
+
logging.error("OpenRouter: Error in processing: %s", str(e))
|
647 |
+
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
|
648 |
+
|
649 |
+
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
|
650 |
+
|
651 |
+
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
|
652 |
+
|
653 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
654 |
+
logging.debug("OpenRouter: Loading json data for summarization")
|
655 |
+
with open(input_data, 'r') as file:
|
656 |
+
data = json.load(file)
|
657 |
+
else:
|
658 |
+
logging.debug("OpenRouter: Using provided string data for summarization")
|
659 |
+
data = input_data
|
660 |
+
|
661 |
+
# DEBUG - Debug logging to identify sent data
|
662 |
+
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
663 |
+
logging.debug(f"OpenRouter: Type of data: {type(data)}")
|
664 |
+
|
665 |
+
if isinstance(data, dict) and 'summary' in data:
|
666 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
667 |
+
logging.debug("OpenRouter: Summary already exists in the loaded data")
|
668 |
+
return data['summary']
|
669 |
+
|
670 |
+
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
671 |
+
if isinstance(data, list):
|
672 |
+
segments = data
|
673 |
+
text = extract_text_from_segments(segments)
|
674 |
+
elif isinstance(data, str):
|
675 |
+
text = data
|
676 |
+
else:
|
677 |
+
raise ValueError("OpenRouter: Invalid input data format")
|
678 |
+
|
679 |
+
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
|
680 |
+
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
|
681 |
+
|
682 |
+
if temp is None:
|
683 |
+
temp = 0.1
|
684 |
+
temp = float(temp)
|
685 |
+
if system_message is None:
|
686 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
687 |
+
|
688 |
+
try:
|
689 |
+
logging.debug("OpenRouter: Submitting request to API endpoint")
|
690 |
+
print("OpenRouter: Submitting request to API endpoint")
|
691 |
+
response = requests.post(
|
692 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
693 |
+
headers={
|
694 |
+
"Authorization": f"Bearer {openrouter_api_key}",
|
695 |
+
},
|
696 |
+
data=json.dumps({
|
697 |
+
"model": openrouter_model,
|
698 |
+
"messages": [
|
699 |
+
{"role": "system", "content": system_message},
|
700 |
+
{"role": "user", "content": openrouter_prompt}
|
701 |
+
],
|
702 |
+
"temperature": temp
|
703 |
+
})
|
704 |
+
)
|
705 |
+
|
706 |
+
response_data = response.json()
|
707 |
+
logging.debug("Full API Response Data: %s", response_data)
|
708 |
+
|
709 |
+
if response.status_code == 200:
|
710 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
711 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
712 |
+
logging.debug("openrouter: Chat request successful")
|
713 |
+
print("openrouter: Chat request successful.")
|
714 |
+
return summary
|
715 |
+
else:
|
716 |
+
logging.error("openrouter: Expected data not found in API response.")
|
717 |
+
return "openrouter: Expected data not found in API response."
|
718 |
+
else:
|
719 |
+
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
|
720 |
+
return f"openrouter: API request failed: {response.text}"
|
721 |
+
except Exception as e:
|
722 |
+
logging.error("openrouter: Error in processing: %s", str(e))
|
723 |
+
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
|
724 |
+
|
725 |
+
|
726 |
+
# FIXME: This function is not yet implemented properly
|
727 |
+
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
|
728 |
+
loaded_config_data = load_and_log_configs()
|
729 |
+
logging.debug(f"huggingface Chat: Chat request process starting...")
|
730 |
+
try:
|
731 |
+
# API key validation
|
732 |
+
if not api_key or api_key.strip() == "":
|
733 |
+
logging.info("HuggingFace Chat: API key not provided as parameter")
|
734 |
+
logging.info("HuggingFace Chat: Attempting to use API key from config file")
|
735 |
+
|
736 |
+
huggingface_api_key = loaded_config_data['api_keys'].get('huggingface')
|
737 |
+
logging.debug(f"HuggingFace Chat: API key from config: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}")
|
738 |
+
|
739 |
+
if huggingface_api_key is None or huggingface_api_key.strip() == "":
|
740 |
+
logging.error("HuggingFace Chat: API key not found or is empty")
|
741 |
+
return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty"
|
742 |
+
if huggingface_api_key:
|
743 |
+
logging.info("HuggingFace Chat: Using API key from config file")
|
744 |
+
headers = {
|
745 |
+
"Authorization": f"Bearer {huggingface_api_key}"
|
746 |
+
}
|
747 |
+
|
748 |
+
# Setup model
|
749 |
+
huggingface_model = loaded_config_data['models']['huggingface']
|
750 |
+
|
751 |
+
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
|
752 |
+
if temp is None:
|
753 |
+
temp = 1.0
|
754 |
+
temp = float(temp)
|
755 |
+
huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
|
756 |
+
logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
|
757 |
+
data = {
|
758 |
+
"model": f"{huggingface_model}",
|
759 |
+
"messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
|
760 |
+
"max_tokens": 4096,
|
761 |
+
"stream": False,
|
762 |
+
"temperature": temp
|
763 |
+
}
|
764 |
+
|
765 |
+
logging.debug("HuggingFace Chat: Submitting request...")
|
766 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
767 |
+
logging.debug(f"Full API response data: {response.text}")
|
768 |
+
|
769 |
+
if response.status_code == 200:
|
770 |
+
response_json = response.json()
|
771 |
+
if "choices" in response_json and len(response_json["choices"]) > 0:
|
772 |
+
generated_text = response_json["choices"][0]["message"]["content"]
|
773 |
+
logging.debug("HuggingFace Chat: Chat request successful")
|
774 |
+
print("HuggingFace Chat: Chat request successful.")
|
775 |
+
return generated_text.strip()
|
776 |
+
else:
|
777 |
+
logging.error("HuggingFace Chat: No generated text in the response")
|
778 |
+
return "HuggingFace Chat: No generated text in the response"
|
779 |
+
else:
|
780 |
+
logging.error(
|
781 |
+
f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
|
782 |
+
return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
|
783 |
+
except Exception as e:
|
784 |
+
logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
|
785 |
+
print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
|
786 |
+
return None
|
787 |
+
|
788 |
+
|
789 |
+
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5):
|
790 |
+
"""
|
791 |
+
Interacts with the DeepSeek API to generate summaries based on input data.
|
792 |
+
|
793 |
+
Parameters:
|
794 |
+
api_key (str): DeepSeek API key. If not provided, the key from the config is used.
|
795 |
+
input_data (str or list): The data to summarize. Can be a string or a list of segments.
|
796 |
+
custom_prompt_arg (str): Custom prompt to append to the input data.
|
797 |
+
temp (float, optional): Temperature setting for the model. Defaults to 0.1.
|
798 |
+
system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message.
|
799 |
+
max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3.
|
800 |
+
retry_delay (int, optional): Delay between retries in seconds. Defaults to 5.
|
801 |
+
|
802 |
+
Returns:
|
803 |
+
str: The summary generated by DeepSeek or an error message.
|
804 |
+
"""
|
805 |
+
logging.debug("DeepSeek: Summarization process starting...")
|
806 |
+
try:
|
807 |
+
logging.debug("DeepSeek: Loading and validating configurations")
|
808 |
+
loaded_config_data = load_and_log_configs()
|
809 |
+
if loaded_config_data is None:
|
810 |
+
logging.error("DeepSeek: Failed to load configuration data")
|
811 |
+
return "DeepSeek: Failed to load configuration data."
|
812 |
+
|
813 |
+
# Prioritize the API key passed as a parameter
|
814 |
+
if api_key and api_key.strip():
|
815 |
+
deepseek_api_key = api_key.strip()
|
816 |
+
logging.info("DeepSeek: Using API key provided as parameter")
|
817 |
+
else:
|
818 |
+
# If no parameter is provided, use the key from the config
|
819 |
+
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
|
820 |
+
if deepseek_api_key and deepseek_api_key.strip():
|
821 |
+
deepseek_api_key = deepseek_api_key.strip()
|
822 |
+
logging.info("DeepSeek: Using API key from config file")
|
823 |
+
else:
|
824 |
+
logging.error("DeepSeek: No valid API key available")
|
825 |
+
return "DeepSeek: API Key Not Provided/Found in Config file or is empty"
|
826 |
+
|
827 |
+
logging.debug("DeepSeek: Using API Key")
|
828 |
+
|
829 |
+
# Input data handling
|
830 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
831 |
+
logging.debug("DeepSeek: Loading JSON data for summarization")
|
832 |
+
with open(input_data, 'r', encoding='utf-8') as file:
|
833 |
+
try:
|
834 |
+
data = json.load(file)
|
835 |
+
except json.JSONDecodeError as e:
|
836 |
+
logging.error(f"DeepSeek: JSON decoding failed: {str(e)}")
|
837 |
+
return f"DeepSeek: Invalid JSON file. Error: {str(e)}"
|
838 |
+
else:
|
839 |
+
logging.debug("DeepSeek: Using provided string data for summarization")
|
840 |
+
data = input_data
|
841 |
+
|
842 |
+
# DEBUG - Debug logging to identify sent data
|
843 |
+
if isinstance(data, str):
|
844 |
+
snipped_data = data[:500] + "..." if len(data) > 500 else data
|
845 |
+
logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}")
|
846 |
+
elif isinstance(data, list):
|
847 |
+
snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2)
|
848 |
+
logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}")
|
849 |
+
else:
|
850 |
+
logging.debug(f"DeepSeek: Loaded data: {data}")
|
851 |
+
|
852 |
+
logging.debug(f"DeepSeek: Type of data: {type(data)}")
|
853 |
+
|
854 |
+
if isinstance(data, dict) and 'summary' in data:
|
855 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
856 |
+
logging.debug("DeepSeek: Summary already exists in the loaded data")
|
857 |
+
return data['summary']
|
858 |
+
|
859 |
+
# Text extraction
|
860 |
+
if isinstance(data, list):
|
861 |
+
segments = data
|
862 |
+
try:
|
863 |
+
text = extract_text_from_segments(segments)
|
864 |
+
logging.debug("DeepSeek: Extracted text from segments")
|
865 |
+
except Exception as e:
|
866 |
+
logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}")
|
867 |
+
return f"DeepSeek: Error extracting text from segments: {str(e)}"
|
868 |
+
elif isinstance(data, str):
|
869 |
+
text = data
|
870 |
+
logging.debug("DeepSeek: Using string data directly")
|
871 |
+
else:
|
872 |
+
raise ValueError("DeepSeek: Invalid input data format")
|
873 |
+
|
874 |
+
# Retrieve the model from config if not provided
|
875 |
+
deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat")
|
876 |
+
logging.debug(f"DeepSeek: Using model: {deepseek_model}")
|
877 |
+
|
878 |
+
# Ensure temperature is a float within acceptable range
|
879 |
+
try:
|
880 |
+
temp = float(temp)
|
881 |
+
if not (0.0 <= temp <= 1.0):
|
882 |
+
logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1")
|
883 |
+
temp = 0.1
|
884 |
+
except (ValueError, TypeError):
|
885 |
+
logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1")
|
886 |
+
temp = 0.1
|
887 |
+
|
888 |
+
# Set default system prompt if not provided
|
889 |
+
if system_message is not None:
|
890 |
+
logging.debug("DeepSeek: Using provided system prompt")
|
891 |
+
else:
|
892 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
893 |
+
logging.debug("DeepSeek: Using default system prompt")
|
894 |
+
|
895 |
+
headers = {
|
896 |
+
'Authorization': f'Bearer {deepseek_api_key}',
|
897 |
+
'Content-Type': 'application/json'
|
898 |
+
}
|
899 |
+
|
900 |
+
logging.debug("DeepSeek: Preparing data and prompt for submittal")
|
901 |
+
deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
|
902 |
+
payload = {
|
903 |
+
"model": deepseek_model,
|
904 |
+
"messages": [
|
905 |
+
{"role": "system", "content": system_message},
|
906 |
+
{"role": "user", "content": deepseek_prompt}
|
907 |
+
],
|
908 |
+
"stream": False,
|
909 |
+
"temperature": temp
|
910 |
+
}
|
911 |
+
|
912 |
+
logging.debug("DeepSeek: Posting request to API")
|
913 |
+
for attempt in range(1, max_retries + 1):
|
914 |
+
try:
|
915 |
+
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30)
|
916 |
+
logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}")
|
917 |
+
|
918 |
+
if response.status_code == 200:
|
919 |
+
response_data = response.json()
|
920 |
+
logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}")
|
921 |
+
|
922 |
+
# Adjust parsing based on actual API response structure
|
923 |
+
if 'choices' in response_data:
|
924 |
+
if len(response_data['choices']) > 0:
|
925 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
926 |
+
logging.debug("DeepSeek: Chat request successful")
|
927 |
+
return summary
|
928 |
+
else:
|
929 |
+
logging.error("DeepSeek: 'choices' key is empty in response")
|
930 |
+
else:
|
931 |
+
logging.error("DeepSeek: 'choices' key missing in response")
|
932 |
+
return "DeepSeek: Unexpected response format from API."
|
933 |
+
elif 500 <= response.status_code < 600:
|
934 |
+
logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
|
935 |
+
else:
|
936 |
+
logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}")
|
937 |
+
return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}"
|
938 |
+
|
939 |
+
except requests.Timeout:
|
940 |
+
logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
|
941 |
+
except requests.RequestException as e:
|
942 |
+
logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
|
943 |
+
|
944 |
+
if attempt < max_retries:
|
945 |
+
time.sleep(retry_delay)
|
946 |
+
else:
|
947 |
+
logging.error("DeepSeek: Max retries reached. Failed to get a successful response.")
|
948 |
+
return "DeepSeek: Failed to get a successful response from API after multiple attempts."
|
949 |
+
|
950 |
+
except Exception as e:
|
951 |
+
logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True)
|
952 |
+
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
|
953 |
+
|
954 |
+
|
955 |
+
|
956 |
+
|
957 |
+
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
958 |
+
logging.debug("Mistral: Chat request made")
|
959 |
+
try:
|
960 |
+
logging.debug("Mistral: Loading and validating configurations")
|
961 |
+
loaded_config_data = load_and_log_configs()
|
962 |
+
if loaded_config_data is None:
|
963 |
+
logging.error("Failed to load configuration data")
|
964 |
+
mistral_api_key = None
|
965 |
+
else:
|
966 |
+
# Prioritize the API key passed as a parameter
|
967 |
+
if api_key and api_key.strip():
|
968 |
+
mistral_api_key = api_key
|
969 |
+
logging.info("Mistral: Using API key provided as parameter")
|
970 |
+
else:
|
971 |
+
# If no parameter is provided, use the key from the config
|
972 |
+
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
|
973 |
+
if mistral_api_key:
|
974 |
+
logging.info("Mistral: Using API key from config file")
|
975 |
+
else:
|
976 |
+
logging.warning("Mistral: No API key found in config file")
|
977 |
+
|
978 |
+
# Final check to ensure we have a valid API key
|
979 |
+
if not mistral_api_key or not mistral_api_key.strip():
|
980 |
+
logging.error("Mistral: No valid API key available")
|
981 |
+
return "Mistral: No valid API key available"
|
982 |
+
|
983 |
+
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
|
984 |
+
|
985 |
+
logging.debug("Mistral: Using provided string data")
|
986 |
+
data = input_data
|
987 |
+
|
988 |
+
# Text extraction
|
989 |
+
if isinstance(input_data, list):
|
990 |
+
text = extract_text_from_segments(input_data)
|
991 |
+
elif isinstance(input_data, str):
|
992 |
+
text = input_data
|
993 |
+
else:
|
994 |
+
raise ValueError("Mistral: Invalid input data format")
|
995 |
+
|
996 |
+
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
|
997 |
+
|
998 |
+
temp = float(temp) if temp is not None else 0.2
|
999 |
+
if system_message is None:
|
1000 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
1001 |
+
|
1002 |
+
headers = {
|
1003 |
+
'Authorization': f'Bearer {mistral_api_key}',
|
1004 |
+
'Content-Type': 'application/json'
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
logging.debug(
|
1008 |
+
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
|
1009 |
+
logging.debug("Mistral: Preparing data + prompt for submittal")
|
1010 |
+
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
|
1011 |
+
data = {
|
1012 |
+
"model": mistral_model,
|
1013 |
+
"messages": [
|
1014 |
+
{"role": "system",
|
1015 |
+
"content": system_message},
|
1016 |
+
{"role": "user",
|
1017 |
+
"content": mistral_prompt}
|
1018 |
+
],
|
1019 |
+
"temperature": temp,
|
1020 |
+
"top_p": 1,
|
1021 |
+
"max_tokens": 4096,
|
1022 |
+
"stream": False,
|
1023 |
+
"safe_prompt": False
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
logging.debug("Mistral: Posting request")
|
1027 |
+
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
|
1028 |
+
logging.debug(f"Full API response data: {response}")
|
1029 |
+
if response.status_code == 200:
|
1030 |
+
response_data = response.json()
|
1031 |
+
logging.debug(response_data)
|
1032 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
1033 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
1034 |
+
logging.debug("Mistral: request successful")
|
1035 |
+
return summary
|
1036 |
+
else:
|
1037 |
+
logging.warning("Mistral: Chat response not found in the response data")
|
1038 |
+
return "Mistral: Chat response not available"
|
1039 |
+
else:
|
1040 |
+
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
|
1041 |
+
logging.error(f"Mistral: Error response: {response.text}")
|
1042 |
+
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
|
1043 |
+
except Exception as e:
|
1044 |
+
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
|
1045 |
+
return f"Mistral: Error occurred while processing Chat: {str(e)}"
|
1046 |
+
|
1047 |
+
|
1048 |
+
|
1049 |
+
# Stashed in here since OpenAI usage.... #FIXME
|
1050 |
+
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
|
1051 |
+
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
|
1052 |
+
# loaded_config_data = load_and_log_configs()
|
1053 |
+
# llm_model = loaded_config_data['models']['vllm']
|
1054 |
+
# # API key validation
|
1055 |
+
# if api_key is None:
|
1056 |
+
# logging.info("vLLM: API key not provided as parameter")
|
1057 |
+
# logging.info("vLLM: Attempting to use API key from config file")
|
1058 |
+
# api_key = loaded_config_data['api_keys']['llama']
|
1059 |
+
#
|
1060 |
+
# if api_key is None or api_key.strip() == "":
|
1061 |
+
# logging.info("vLLM: API key not found or is empty")
|
1062 |
+
# vllm_client = OpenAI(
|
1063 |
+
# base_url=vllm_api_url,
|
1064 |
+
# api_key=custom_prompt_input
|
1065 |
+
# )
|
1066 |
+
#
|
1067 |
+
# if isinstance(input_data, str) and os.path.isfile(input_data):
|
1068 |
+
# logging.debug("vLLM: Loading json data for summarization")
|
1069 |
+
# with open(input_data, 'r') as file:
|
1070 |
+
# data = json.load(file)
|
1071 |
+
# else:
|
1072 |
+
# logging.debug("vLLM: Using provided string data for summarization")
|
1073 |
+
# data = input_data
|
1074 |
+
#
|
1075 |
+
# logging.debug(f"vLLM: Loaded data: {data}")
|
1076 |
+
# logging.debug(f"vLLM: Type of data: {type(data)}")
|
1077 |
+
#
|
1078 |
+
# if isinstance(data, dict) and 'summary' in data:
|
1079 |
+
# # If the loaded data is a dictionary and already contains a summary, return it
|
1080 |
+
# logging.debug("vLLM: Summary already exists in the loaded data")
|
1081 |
+
# return data['summary']
|
1082 |
+
#
|
1083 |
+
# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
1084 |
+
# if isinstance(data, list):
|
1085 |
+
# segments = data
|
1086 |
+
# text = extract_text_from_segments(segments)
|
1087 |
+
# elif isinstance(data, str):
|
1088 |
+
# text = data
|
1089 |
+
# else:
|
1090 |
+
# raise ValueError("Invalid input data format")
|
1091 |
+
#
|
1092 |
+
#
|
1093 |
+
# custom_prompt = custom_prompt_input
|
1094 |
+
#
|
1095 |
+
# completion = client.chat.completions.create(
|
1096 |
+
# model=llm_model,
|
1097 |
+
# messages=[
|
1098 |
+
# {"role": "system", "content": f"{system_prompt}"},
|
1099 |
+
# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
|
1100 |
+
# ]
|
1101 |
+
# )
|
1102 |
+
# vllm_summary = completion.choices[0].message.content
|
1103 |
+
# return vllm_summary
|
1104 |
+
|
1105 |
+
|
1106 |
+
|
1107 |
+
#
|
1108 |
+
#
|
1109 |
#######################################################################################################################
|
App_Function_Libraries/LLM_API_Calls_Local.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
# This library is used to perform summarization with a 'local' inference engine.
|
5 |
#
|
6 |
####
|
|
|
7 |
from typing import Union
|
8 |
|
9 |
####################
|
@@ -99,7 +100,8 @@ def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None
|
|
99 |
print("Error occurred while processing Chat request with Local LLM:", str(e))
|
100 |
return "Local LLM: Error occurred while processing Chat response"
|
101 |
|
102 |
-
|
|
|
103 |
loaded_config_data = load_and_log_configs()
|
104 |
try:
|
105 |
# API key validation
|
@@ -113,6 +115,15 @@ def chat_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/co
|
|
113 |
|
114 |
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
headers = {
|
117 |
'accept': 'application/json',
|
118 |
'content-type': 'application/json',
|
@@ -132,7 +143,29 @@ def chat_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/co
|
|
132 |
|
133 |
data = {
|
134 |
"prompt": f"{llama_prompt}",
|
135 |
-
"system_prompt": f"{system_prompt}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
}
|
137 |
|
138 |
logging.debug("llama: Submitting request to API endpoint")
|
@@ -400,10 +433,19 @@ def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="h
|
|
400 |
return "Error summarizing with Aphrodite."
|
401 |
|
402 |
|
403 |
-
|
404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
try:
|
406 |
-
logging.debug("
|
407 |
loaded_config_data = load_and_log_configs()
|
408 |
if loaded_config_data is None:
|
409 |
logging.error("Failed to load configuration data")
|
@@ -421,7 +463,19 @@ def chat_with_ollama(input_data, custom_prompt, api_url="http://127.0.0.1:11434/
|
|
421 |
else:
|
422 |
logging.warning("Ollama: No API key found in config file")
|
423 |
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
# Load transcript
|
427 |
logging.debug("Ollama: Loading JSON data")
|
@@ -454,48 +508,88 @@ def chat_with_ollama(input_data, custom_prompt, api_url="http://127.0.0.1:11434/
|
|
454 |
'accept': 'application/json',
|
455 |
'content-type': 'application/json',
|
456 |
}
|
457 |
-
if len(ollama_api_key) > 5:
|
458 |
headers['Authorization'] = f'Bearer {ollama_api_key}'
|
459 |
|
460 |
-
ollama_prompt = f"{custom_prompt}
|
461 |
-
if system_message is None:
|
462 |
-
system_message = "You are a helpful AI assistant."
|
463 |
-
logging.debug(f"llama: Prompt being sent is {ollama_prompt}")
|
464 |
if system_message is None:
|
465 |
system_message = "You are a helpful AI assistant."
|
|
|
466 |
|
467 |
-
|
468 |
"model": model,
|
469 |
"messages": [
|
470 |
-
{
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
|
|
476 |
],
|
477 |
}
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
except Exception as e:
|
497 |
logging.error("\n\nOllama: Error in processing: %s", str(e))
|
498 |
-
return f"Ollama: Error occurred while processing summary with
|
|
|
499 |
|
500 |
def chat_with_vllm(
|
501 |
input_data: Union[str, dict, list],
|
|
|
4 |
# This library is used to perform summarization with a 'local' inference engine.
|
5 |
#
|
6 |
####
|
7 |
+
import logging
|
8 |
from typing import Union
|
9 |
|
10 |
####################
|
|
|
100 |
print("Error occurred while processing Chat request with Local LLM:", str(e))
|
101 |
return "Local LLM: Error occurred while processing Chat response"
|
102 |
|
103 |
+
# FIXME
|
104 |
+
def chat_with_llama(input_data, custom_prompt, temp, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None):
|
105 |
loaded_config_data = load_and_log_configs()
|
106 |
try:
|
107 |
# API key validation
|
|
|
115 |
|
116 |
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
117 |
|
118 |
+
if api_url is None:
|
119 |
+
logging.info("llama.cpp: API URL not provided as parameter")
|
120 |
+
logging.info("llama.cpp: Attempting to use API URL from config file")
|
121 |
+
api_url = loaded_config_data['local_api_ip']['llama']
|
122 |
+
|
123 |
+
if api_url is None or api_url.strip() == "":
|
124 |
+
logging.info("llama.cpp: API URL not found or is empty")
|
125 |
+
return "llama.cpp: API URL not found or is empty"
|
126 |
+
|
127 |
headers = {
|
128 |
'accept': 'application/json',
|
129 |
'content-type': 'application/json',
|
|
|
143 |
|
144 |
data = {
|
145 |
"prompt": f"{llama_prompt}",
|
146 |
+
"system_prompt": f"{system_prompt}",
|
147 |
+
'temperature': temp,
|
148 |
+
#'top_k': '40',
|
149 |
+
#'top_p': '0.95',
|
150 |
+
#'min_p': '0.05',
|
151 |
+
#'n_predict': '-1',
|
152 |
+
#'n_keep': '0',
|
153 |
+
'stream': 'True',
|
154 |
+
#'stop': '["\n"]',
|
155 |
+
#'tfs_z': '1.0',
|
156 |
+
#'repeat_penalty': '1.1',
|
157 |
+
#'repeat_last_n': '64',
|
158 |
+
#'presence_penalty': '0.0',
|
159 |
+
#'frequency_penalty': '0.0',
|
160 |
+
#'mirostat': '0',
|
161 |
+
#'grammar': '0',
|
162 |
+
#'json_schema': '0',
|
163 |
+
#'ignore_eos': 'false',
|
164 |
+
#'logit_bias': [],
|
165 |
+
#'n_probs': '0',
|
166 |
+
#'min_keep': '0',
|
167 |
+
#'samplers': '["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]',
|
168 |
+
|
169 |
}
|
170 |
|
171 |
logging.debug("llama: Submitting request to API endpoint")
|
|
|
433 |
return "Error summarizing with Aphrodite."
|
434 |
|
435 |
|
436 |
+
def chat_with_ollama(
|
437 |
+
input_data,
|
438 |
+
custom_prompt,
|
439 |
+
api_url="http://127.0.0.1:11434/v1/chat/completions",
|
440 |
+
api_key=None,
|
441 |
+
temp=None,
|
442 |
+
system_message=None,
|
443 |
+
model=None,
|
444 |
+
max_retries=5,
|
445 |
+
retry_delay=20
|
446 |
+
):
|
447 |
try:
|
448 |
+
logging.debug("Ollama: Loading and validating configurations")
|
449 |
loaded_config_data = load_and_log_configs()
|
450 |
if loaded_config_data is None:
|
451 |
logging.error("Failed to load configuration data")
|
|
|
463 |
else:
|
464 |
logging.warning("Ollama: No API key found in config file")
|
465 |
|
466 |
+
# Set model from parameter or config
|
467 |
+
if model is None:
|
468 |
+
model = loaded_config_data['models'].get('ollama')
|
469 |
+
if model is None:
|
470 |
+
logging.error("Ollama: Model not found in config file")
|
471 |
+
return "Ollama: Model not found in config file"
|
472 |
+
|
473 |
+
# Set api_url from parameter or config
|
474 |
+
if api_url is None:
|
475 |
+
api_url = loaded_config_data['local_api_ip'].get('ollama')
|
476 |
+
if api_url is None:
|
477 |
+
logging.error("Ollama: API URL not found in config file")
|
478 |
+
return "Ollama: API URL not found in config file"
|
479 |
|
480 |
# Load transcript
|
481 |
logging.debug("Ollama: Loading JSON data")
|
|
|
508 |
'accept': 'application/json',
|
509 |
'content-type': 'application/json',
|
510 |
}
|
511 |
+
if ollama_api_key and len(ollama_api_key) > 5:
|
512 |
headers['Authorization'] = f'Bearer {ollama_api_key}'
|
513 |
|
514 |
+
ollama_prompt = f"{custom_prompt}\n\n{text}"
|
|
|
|
|
|
|
515 |
if system_message is None:
|
516 |
system_message = "You are a helpful AI assistant."
|
517 |
+
logging.debug(f"Ollama: Prompt being sent is: {ollama_prompt}")
|
518 |
|
519 |
+
data_payload = {
|
520 |
"model": model,
|
521 |
"messages": [
|
522 |
+
{
|
523 |
+
"role": "system",
|
524 |
+
"content": system_message
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"role": "user",
|
528 |
+
"content": ollama_prompt
|
529 |
+
}
|
530 |
],
|
531 |
}
|
532 |
|
533 |
+
for attempt in range(1, max_retries + 1):
|
534 |
+
logging.debug("Ollama: Submitting request to API endpoint")
|
535 |
+
print("Ollama: Submitting request to API endpoint")
|
536 |
+
try:
|
537 |
+
response = requests.post(api_url, headers=headers, json=data_payload, timeout=30)
|
538 |
+
response.raise_for_status() # Raises HTTPError for bad responses
|
539 |
+
response_data = response.json()
|
540 |
+
except requests.exceptions.Timeout:
|
541 |
+
logging.error("Ollama: Request timed out.")
|
542 |
+
return "Ollama: Request timed out."
|
543 |
+
except requests.exceptions.HTTPError as http_err:
|
544 |
+
logging.error(f"Ollama: HTTP error occurred: {http_err}")
|
545 |
+
return f"Ollama: HTTP error occurred: {http_err}"
|
546 |
+
except requests.exceptions.RequestException as req_err:
|
547 |
+
logging.error(f"Ollama: Request exception: {req_err}")
|
548 |
+
return f"Ollama: Request exception: {req_err}"
|
549 |
+
except json.JSONDecodeError:
|
550 |
+
logging.error("Ollama: Failed to decode JSON response")
|
551 |
+
return "Ollama: Failed to decode JSON response."
|
552 |
+
except Exception as e:
|
553 |
+
logging.error(f"Ollama: An unexpected error occurred: {str(e)}")
|
554 |
+
return f"Ollama: An unexpected error occurred: {str(e)}"
|
555 |
+
|
556 |
+
logging.debug(f"API Response Data: {response_data}")
|
557 |
|
558 |
+
if response.status_code == 200:
|
559 |
+
# Inspect available keys
|
560 |
+
available_keys = list(response_data.keys())
|
561 |
+
logging.debug(f"Ollama: Available keys in response: {available_keys}")
|
562 |
+
|
563 |
+
# Attempt to retrieve 'response'
|
564 |
+
summary = None
|
565 |
+
if 'response' in response_data and response_data['response']:
|
566 |
+
summary = response_data['response'].strip()
|
567 |
+
elif 'choices' in response_data and len(response_data['choices']) > 0:
|
568 |
+
choice = response_data['choices'][0]
|
569 |
+
if 'message' in choice and 'content' in choice['message']:
|
570 |
+
summary = choice['message']['content'].strip()
|
571 |
+
|
572 |
+
if summary:
|
573 |
+
logging.debug("Ollama: Chat request successful")
|
574 |
+
print("\n\nChat request successful.")
|
575 |
+
return summary
|
576 |
+
elif response_data.get('done_reason') == 'load':
|
577 |
+
logging.warning(f"Ollama: Model is loading. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
|
578 |
+
time.sleep(retry_delay)
|
579 |
+
else:
|
580 |
+
logging.error("Ollama: API response does not contain 'response' or 'choices'.")
|
581 |
+
return "Ollama: API response does not contain 'response' or 'choices'."
|
582 |
+
else:
|
583 |
+
logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}")
|
584 |
+
return f"Ollama: API request failed: {response.text}"
|
585 |
+
|
586 |
+
logging.error("Ollama: Maximum retry attempts reached. Model is still loading.")
|
587 |
+
return "Ollama: Maximum retry attempts reached. Model is still loading."
|
588 |
|
589 |
except Exception as e:
|
590 |
logging.error("\n\nOllama: Error in processing: %s", str(e))
|
591 |
+
return f"Ollama: Error occurred while processing summary with Ollama: {str(e)}"
|
592 |
+
|
593 |
|
594 |
def chat_with_vllm(
|
595 |
input_data: Union[str, dict, list],
|
App_Function_Libraries/Prompt_Handling.py
CHANGED
@@ -5,6 +5,8 @@ import tempfile
|
|
5 |
import zipfile
|
6 |
import re
|
7 |
|
|
|
|
|
8 |
|
9 |
def import_prompt_from_file(file):
|
10 |
if file is None:
|
@@ -78,7 +80,7 @@ def import_prompt_data(name, details, system, user):
|
|
78 |
return "Name and System fields are required."
|
79 |
|
80 |
try:
|
81 |
-
conn = sqlite3.connect('prompts.db')
|
82 |
cursor = conn.cursor()
|
83 |
cursor.execute('''
|
84 |
INSERT INTO Prompts (name, details, system, user)
|
|
|
5 |
import zipfile
|
6 |
import re
|
7 |
|
8 |
+
from App_Function_Libraries.Utils.Utils import get_database_path
|
9 |
+
|
10 |
|
11 |
def import_prompt_from_file(file):
|
12 |
if file is None:
|
|
|
80 |
return "Name and System fields are required."
|
81 |
|
82 |
try:
|
83 |
+
conn = sqlite3.connect(get_database_path('prompts.db'))
|
84 |
cursor = conn.cursor()
|
85 |
cursor.execute('''
|
86 |
INSERT INTO Prompts (name, details, system, user)
|