|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', |
|
bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]' |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', |
|
pad_token_id=tokenizer.eos_token_id, |
|
torch_dtype='auto', low_cpu_mem_usage=True |
|
).to(device='cpu', non_blocking=True) |
|
_ = model.eval() |
|
|
|
title = "KoGPT" |
|
description = "Gradio demo for KoGPT(Korean Generative Pre-trained Transformer). To use it, simply add your text, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://github.com/kakaobrain/kogpt' target='_blank'>KoGPT: KakaoBrain Korean(hangul) Generative Pre-trained Transformer</a> | <a href='https://huggingface.co/kakaobrain/kogpt' target='_blank'>Huggingface Model</a></p>" |
|
examples=[['μΈκ°μ²λΌ μκ°νκ³ , νλνλ \'μ§λ₯\'μ ν΅ν΄ μΈλ₯κ° μ΄μ κΉμ§ νμ§ λͺ»νλ']] |
|
def greet(text): |
|
prompt = text |
|
with torch.no_grad(): |
|
tokens = tokenizer.encode(prompt, return_tensors='pt').to(device='cpu', non_blocking=True) |
|
gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=64) |
|
generated = tokenizer.batch_decode(gen_tokens)[0] |
|
|
|
print(f"generated {generated}") |
|
|
|
return generated |
|
|
|
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title=title, description=description, article=article, examples=examples,enable_queue=True) |
|
iface.launch() |