Spaces:
Running
Running
File size: 4,004 Bytes
19dc0f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import torch
from numba import njit
from modules import shared
def process_llamacpp_cache(model, new_sequence, past_sequence):
if len(past_sequence) == 0 or len(new_sequence) == 0:
return past_sequence
i1, i2, j1, j2 = find_longest_common_substring_indices(past_sequence, new_sequence)
overlap_length = i2 - i1 + 1
# Do StreamingLLM if i1 > 0 (ie the longest common subsequence is not a prefix)
# and the overlap length is sufficiently long.
if i1 > 0 and overlap_length > 0.2 * len(new_sequence):
new_sequence = torch.tensor(new_sequence)
past_sequence = torch.tensor(past_sequence)
prefix_length = find_prefix_length(past_sequence[:i1], new_sequence[:j1])
sink_length = max(prefix_length, shared.args.attention_sink_size)
removed_length = i1 - sink_length
if removed_length <= 0:
return past_sequence.tolist()
matching_prefix = past_sequence[:prefix_length]
removed_chunk = past_sequence[sink_length:i1]
overlapping_sequence = new_sequence[j1:j2 + 1]
added_chunk = new_sequence[j2 + 1:]
# print(past_sequence.tolist())
# print(new_sequence.tolist())
print()
print('MATCHING PREFIX=', repr(shared.tokenizer.decode(matching_prefix)))
print('ADDED CHUNK=', repr(shared.tokenizer.decode(added_chunk)))
print('REMOVED CHUNK=', repr(shared.tokenizer.decode(removed_chunk)))
print('REMOVED LENGTH=', removed_length)
print()
# Remove interval [sink_length, sink_length + removed_length) from the context
# Update model.n_tokens
model._ctx.kv_cache_seq_rm(0, sink_length, sink_length + removed_length)
model._ctx.kv_cache_seq_shift(0, sink_length + removed_length, -1, -removed_length)
new_sequence = new_sequence.tolist()
model.input_ids[:j2 + 1] = new_sequence[:j2 + 1]
model.n_tokens = j2 + 1
return new_sequence[:j2 + 1]
else:
return past_sequence
def find_prefix_length(past_seq, seq_tensor):
'''
Given two torch tensors, finds the length of the longest
common prefix between the two.
'''
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
if len(indices) > 0:
prefix_length = indices[0].item()
else:
prefix_length = min_length
return prefix_length
@njit
def find_longest_common_substring_indices(list1, list2):
'''
Given two lists, solves the Longest Common Substring problem.
It returns the indices where the substring starts and ends in
s1 and s2.
Example:
ir, jr, ir2, jr2 = find_longest_common_substring_indices(s1, s2)
print(s1[ir:jr + 1])
print(s2[ir2:jr2 + 1])
Adapted from
https://rosettacode.org/wiki/Longest_common_substring#Python
'''
len_list1, len_list2 = len(list1), len(list2)
start_index_list1, end_index_list1 = 0, -1
start_index_list2, end_index_list2 = 0, -1
# for index1 in tqdm(range(0, len_list1), desc="StreamingLLM prompt comparison", leave=False):
for index1 in range(0, len_list1):
try:
index2 = list2.index(list1[index1])
except:
continue
while index2 >= 0:
temp_index1, temp_index2 = index1, index2
while temp_index1 < len_list1 and temp_index2 < len_list2 and list2[temp_index2] == list1[temp_index1]:
if temp_index1 - index1 >= end_index_list1 - start_index_list1:
start_index_list1, end_index_list1 = index1, temp_index1
start_index_list2, end_index_list2 = index2, temp_index2
temp_index1 += 1
temp_index2 += 1
try:
index2 = list2.index(list1[index1], index2 + 1)
except:
break
return start_index_list1, end_index_list1, start_index_list2, end_index_list2
|