Spaces:
Running
Running
from functools import partial | |
import torch | |
import transformers | |
import math | |
from torch.optim.lr_scheduler import LambdaLR | |
from peft import ( | |
PeftModel, | |
) | |
RED = "\033[91m" | |
YELLOW = "\033[93m" | |
GREEN = "\033[92m" | |
RESET = "\033[0m" | |
last_print_label = '' | |
custom_scheduler_params = {'trigger_loss': 0.0, 'ramp_down_ratio':1.0, 'current_loss': 0.0,'dynamic_scheduler_stop': False, 'calc_ramp_down_at_step': 0, 'calc_num_training_steps': 0} | |
def custom_scheduler_global_update(current_loss: float): | |
custom_scheduler_params.update({'current_loss': current_loss}) | |
def custom_scheduler_global_setup(trigger_loss: float, ramp_down_ratio: float): | |
custom_scheduler_params.update({'trigger_loss': trigger_loss}) | |
custom_scheduler_params.update({'ramp_down_ratio': ramp_down_ratio}) | |
# calculates the total num steps after trigger | |
custom_scheduler_params.update({'calc_num_training_steps': 0}) | |
#calculates steps when the ramp_down trigger occured | |
custom_scheduler_params.update({'calc_ramp_down_at_step': 0}) | |
# triggers scheduler stopping after it reached calc_num_training_steps | |
custom_scheduler_params.update({'dynamic_scheduler_stop': False}) | |
# hold constant to the half of epochs then cosine down to 0 | |
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
half_steps = num_training_steps//2 | |
num_warmup_steps = min(num_warmup_steps,half_steps) | |
if current_step < num_warmup_steps: | |
print_label = 'Scheduler: Warmup' | |
elif current_step < half_steps: | |
print_label = 'Scheduler: Hold' | |
else: | |
print_label = 'Scheduler: Annealing' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
if current_step < half_steps: | |
return 1.0 | |
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) | |
num_cycles = 0.5 | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
# raise up in cosine, then fall back in cosine | |
def _get_fp_cosine_raise_and_fall_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
half_steps = num_training_steps//2 | |
#num_warmup_steps = min(num_warmup_steps,half_steps) | |
if current_step < half_steps: | |
print_label = 'Scheduler: Raise' | |
else: | |
print_label = 'Scheduler: Fall' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
# linear | |
# return float(current_step) / float(max(1, num_warmup_steps)) | |
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) | |
num_cycles = 0.5 | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
# constant to the first epochs then cosine down to 0 over the rest epochs | |
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps) | |
if current_step < num_warmup_steps: | |
print_label = 'Scheduler: Warmup' | |
elif current_step < num_firstepoch_steps: | |
print_label = 'Scheduler: Hold' | |
else: | |
print_label = 'Scheduler: Annealing' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
if current_step < num_firstepoch_steps: | |
return 1.0 | |
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps)) | |
num_cycles = 0.5 | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
# halve lr each epoch | |
def _get_fp_cdrop_rate_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
num_warmup_steps = min(num_warmup_steps, num_firstepoch_steps) | |
current_epoch = (current_step // num_firstepoch_steps) + 1 | |
if current_step < num_warmup_steps: | |
print_label = 'Scheduler: Warmup' | |
elif current_step < num_firstepoch_steps: | |
print_label = 'Scheduler: Hold' | |
else: | |
print_label = 'Scheduler: Drop Rate' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
if current_step < num_firstepoch_steps: | |
return 1.0 | |
# Compute the learning rate for the annealing phase | |
learning_rate = 1.0 / float(2 ** (current_epoch - 1)) | |
return learning_rate | |
# epoch decay: 1/(1 + decay * epoch) | |
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): | |
""" | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The total number of training steps. | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
lr_lambda = partial( | |
_get_fp_cosine_schedule_with_warmup_lr_lambda, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): | |
""" | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The total number of training steps. | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
lr_lambda = partial( | |
_get_fp_half_schedule_with_warmup_lr_lambda, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
def custom_raise_fall_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): | |
""" | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The total number of training steps. | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
lr_lambda = partial( | |
_get_fp_cosine_raise_and_fall_lr_lambda, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
def neftune_forward(self, input: torch.Tensor): | |
""" | |
Implements the NEFTune forward pass for the model. Note this works only for | |
torch.nn.Embedding layers. This method is slightly adapted from the original source code | |
that can be found here: https://github.com/neelsjain/NEFTune | |
Args: | |
input (`torch.Tensor`): | |
The input tensor to the model. | |
noise_alpha (`float`): | |
The noise alpha value to use for the NEFTune forward pass. | |
""" | |
embeddings = torch.nn.functional.embedding( | |
input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse | |
) | |
if self.training: | |
# Add noise to the embeddings | |
dims = torch.tensor(embeddings.size(1) * embeddings.size(2)) | |
mag_norm = self.neftune_noise_alpha / torch.sqrt(dims) | |
embeddings = embeddings + torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm) | |
return embeddings | |
class FPNEFtuneTrainer(transformers.Trainer): | |
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs): | |
self.neftune_noise_alpha = neftune_noise_alpha | |
if self.neftune_noise_alpha > 0.0: | |
model = self._activate_neftune(model) | |
super().__init__(model = model, *args, **kwargs) | |
def _activate_neftune(self, model): | |
r""" | |
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 | |
""" | |
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}") | |
if isinstance(model, transformers.PreTrainedModel): | |
embeddings = model.get_input_embeddings() | |
elif isinstance(model, PeftModel): | |
embeddings = model.base_model.get_input_embeddings() | |
embeddings.neftune_noise_alpha = self.neftune_noise_alpha | |
old_forward = embeddings.forward | |
# This hack seems to be needed to properly use a custom forward pass | |
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11 | |
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__) | |
setattr(embeddings, "forward", bound_method) | |
# embeddings.forward = neftune_forward | |
embeddings._trl_old_forward = old_forward | |
return model | |
def train(self, *args, **kwargs): | |
output = super().train(*args, **kwargs) | |
# After training we make sure to retrieve back the original forward pass method | |
# for the embedding layer | |
if self.neftune_noise_alpha is not None: | |
if isinstance(self.model, transformers.PreTrainedModel): | |
embeddings = self.model.get_input_embeddings() | |
elif isinstance(self.model, PeftModel): | |
embeddings = self.model.base_model.get_input_embeddings() | |
if hasattr(embeddings, "_trl_old_forward"): | |
embeddings.forward = embeddings._trl_old_forward | |
del embeddings._trl_old_forward | |
del embeddings.neftune_noise_alpha | |
return output | |
class FPSchedulerTrainer(transformers.Trainer): | |
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs): | |
self.neftune_noise_alpha = neftune_noise_alpha | |
if self.neftune_noise_alpha > 0.0: | |
model = self._activate_neftune(model) | |
super().__init__(model = model, *args, **kwargs) | |
def _activate_neftune(self, model): | |
r""" | |
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 | |
""" | |
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}") | |
if isinstance(model, transformers.PreTrainedModel): | |
embeddings = model.get_input_embeddings() | |
elif isinstance(model, PeftModel): | |
embeddings = model.base_model.get_input_embeddings() | |
embeddings.neftune_noise_alpha = self.neftune_noise_alpha | |
old_forward = embeddings.forward | |
# This hack seems to be needed to properly use a custom forward pass | |
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11 | |
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__) | |
setattr(embeddings, "forward", bound_method) | |
# embeddings.forward = neftune_forward | |
embeddings._trl_old_forward = old_forward | |
return model | |
def train(self, *args, **kwargs): | |
output = super().train(*args, **kwargs) | |
# After training we make sure to retrieve back the original forward pass method | |
# for the embedding layer | |
if self.neftune_noise_alpha is not None: | |
if isinstance(self.model, transformers.PreTrainedModel): | |
embeddings = self.model.get_input_embeddings() | |
elif isinstance(self.model, PeftModel): | |
embeddings = self.model.base_model.get_input_embeddings() | |
if hasattr(embeddings, "_trl_old_forward"): | |
embeddings.forward = embeddings._trl_old_forward | |
del embeddings._trl_old_forward | |
del embeddings.neftune_noise_alpha | |
return output | |
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): | |
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument. | |
num_train_epochs = self.args.num_train_epochs | |
num_warmup_steps=self.args.get_warmup_steps(num_training_steps) | |
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs) | |
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps | |
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps | |
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps | |
custom_scheduler_params.update({'dynamic_scheduler_stop': False}) | |
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps") | |
if self.args.lr_scheduler_type == 'cosine': | |
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc) | |
if num_warmup_acc>num_firstepoch_steps_acc: | |
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m") | |
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") | |
else: | |
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") | |
self.lr_scheduler = custom_cosine_scheduler_with_warmup( | |
optimizer=self.optimizer if optimizer is None else optimizer, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
self._created_lr_scheduler = True | |
return self.lr_scheduler | |
elif self.args.lr_scheduler_type == 'constant': | |
half_step_acc = num_training_steps_acc//2 | |
num_warmup_acc_min = min(num_warmup_acc, half_step_acc) | |
if num_warmup_acc>half_step_acc: | |
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m") | |
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") | |
else: | |
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") | |
self.lr_scheduler = custom_half_scheduler_with_warmup( | |
optimizer=self.optimizer if optimizer is None else optimizer, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
self._created_lr_scheduler = True | |
return self.lr_scheduler | |
elif self.args.lr_scheduler_type == 'constant_with_warmup': | |
half_step_acc = num_training_steps_acc//2 | |
if num_warmup_steps>0: | |
print(f"Warmup doesn't apply to this scheduler [Raise-Fall]") | |
print (f"Scheduler Raise: 0-{half_step_acc}, Fall {half_step_acc}-{num_training_steps_acc}") | |
self.lr_scheduler = custom_raise_fall_scheduler_with_warmup( | |
optimizer=self.optimizer if optimizer is None else optimizer, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
self._created_lr_scheduler = True | |
return self.lr_scheduler | |
else: | |
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) |