Spaces:
Running
Running
import gc | |
import logging | |
import os | |
import pprint | |
import re | |
import time | |
import traceback | |
from pathlib import Path | |
import torch | |
import transformers | |
from accelerate import infer_auto_device_map, init_empty_weights | |
from accelerate.utils import ( | |
is_ccl_available, | |
is_npu_available, | |
is_xpu_available | |
) | |
from transformers import ( | |
AutoConfig, | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
GPTQConfig | |
) | |
import modules.shared as shared | |
from modules import RoPE, sampler_hijack | |
from modules.logging_colors import logger | |
from modules.models_settings import get_model_metadata | |
from modules.relative_imports import RelativeImport | |
transformers.logging.set_verbosity_error() | |
local_rank = None | |
if shared.args.deepspeed: | |
import deepspeed | |
from transformers.deepspeed import ( | |
HfDeepSpeedConfig, | |
is_deepspeed_zero3_enabled | |
) | |
from modules.deepspeed_parameters import generate_ds_config | |
# Distributed setup | |
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) | |
world_size = int(os.getenv("WORLD_SIZE", "1")) | |
if is_xpu_available() and is_ccl_available(): | |
torch.xpu.set_device(local_rank) | |
deepspeed.init_distributed(backend="ccl") | |
elif is_npu_available(): | |
torch.npu.set_device(local_rank) | |
deepspeed.init_distributed(dist_backend="hccl") | |
else: | |
torch.cuda.set_device(local_rank) | |
deepspeed.init_distributed() | |
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) | |
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration | |
sampler_hijack.hijack_samplers() | |
def load_model(model_name, loader=None): | |
logger.info(f"Loading \"{model_name}\"") | |
t0 = time.time() | |
shared.is_seq2seq = False | |
shared.model_name = model_name | |
load_func_map = { | |
'Transformers': huggingface_loader, | |
'AutoGPTQ': AutoGPTQ_loader, | |
'GPTQ-for-LLaMa': GPTQ_loader, | |
'llama.cpp': llamacpp_loader, | |
'llamacpp_HF': llamacpp_HF_loader, | |
'ExLlamav2': ExLlamav2_loader, | |
'ExLlamav2_HF': ExLlamav2_HF_loader, | |
'AutoAWQ': AutoAWQ_loader, | |
'QuIP#': QuipSharp_loader, | |
'HQQ': HQQ_loader, | |
} | |
metadata = get_model_metadata(model_name) | |
if loader is None: | |
if shared.args.loader is not None: | |
loader = shared.args.loader | |
else: | |
loader = metadata['loader'] | |
if loader is None: | |
logger.error('The path to the model does not exist. Exiting.') | |
raise ValueError | |
shared.args.loader = loader | |
output = load_func_map[loader](model_name) | |
if type(output) is tuple: | |
model, tokenizer = output | |
else: | |
model = output | |
if model is None: | |
return None, None | |
else: | |
tokenizer = load_tokenizer(model_name, model) | |
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) | |
if loader.lower().startswith('exllama'): | |
shared.settings['truncation_length'] = shared.args.max_seq_len | |
elif loader in ['llama.cpp', 'llamacpp_HF']: | |
shared.settings['truncation_length'] = shared.args.n_ctx | |
logger.info(f"LOADER: \"{loader}\"") | |
logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}") | |
logger.info(f"INSTRUCTION TEMPLATE: \"{metadata['instruction_template']}\"") | |
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.") | |
return model, tokenizer | |
def load_tokenizer(model_name, model): | |
tokenizer = None | |
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") | |
if path_to_model.exists(): | |
if shared.args.no_use_fast: | |
logger.info('Loading the tokenizer with use_fast=False.') | |
tokenizer = AutoTokenizer.from_pretrained( | |
path_to_model, | |
trust_remote_code=shared.args.trust_remote_code, | |
use_fast=not shared.args.no_use_fast | |
) | |
return tokenizer | |
def huggingface_loader(model_name): | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
params = { | |
'low_cpu_mem_usage': True, | |
'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16, | |
} | |
if shared.args.trust_remote_code: | |
params['trust_remote_code'] = True | |
if shared.args.use_flash_attention_2: | |
params['use_flash_attention_2'] = True | |
if shared.args.force_safetensors: | |
params['force_safetensors'] = True | |
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) | |
if 'chatglm' in model_name.lower(): | |
LoaderClass = AutoModel | |
else: | |
if config.to_dict().get('is_encoder_decoder', False): | |
LoaderClass = AutoModelForSeq2SeqLM | |
shared.is_seq2seq = True | |
else: | |
LoaderClass = AutoModelForCausalLM | |
# Load the model without any special settings | |
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama, shared.args.disable_exllamav2]): | |
logger.info("TRANSFORMERS_PARAMS=") | |
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params) | |
print() | |
model = LoaderClass.from_pretrained(path_to_model, **params) | |
if not (hasattr(model, 'is_loaded_in_4bit') and model.is_loaded_in_4bit): | |
if torch.backends.mps.is_available(): | |
device = torch.device('mps') | |
model = model.to(device) | |
elif is_xpu_available(): | |
device = torch.device("xpu") | |
model = model.to(device) | |
elif is_npu_available(): | |
device = torch.device("npu") | |
model = model.to(device) | |
else: | |
model = model.cuda() | |
# DeepSpeed ZeRO-3 | |
elif shared.args.deepspeed: | |
model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype'], trust_remote_code=params.get('trust_remote_code')) | |
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] | |
model.module.eval() # Inference | |
logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}') | |
# Load with quantization and/or offloading | |
else: | |
if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())): | |
logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.') | |
shared.args.cpu = True | |
if shared.args.cpu: | |
params['torch_dtype'] = torch.float32 | |
else: | |
params['device_map'] = 'auto' | |
if x := get_max_memory_dict(): | |
params['max_memory'] = x | |
if shared.args.load_in_4bit: | |
# See https://github.com/huggingface/transformers/pull/23479/files | |
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes | |
quantization_config_params = { | |
'load_in_4bit': True, | |
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, | |
'bnb_4bit_quant_type': shared.args.quant_type, | |
'bnb_4bit_use_double_quant': shared.args.use_double_quant, | |
'llm_int8_enable_fp32_cpu_offload': True | |
} | |
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) | |
elif shared.args.load_in_8bit: | |
if any((shared.args.auto_devices, shared.args.gpu_memory)): | |
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) | |
else: | |
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) | |
if params.get('max_memory') is not None: | |
with init_empty_weights(): | |
model = LoaderClass.from_config(config, trust_remote_code=params.get('trust_remote_code')) | |
model.tie_weights() | |
params['device_map'] = infer_auto_device_map( | |
model, | |
dtype=torch.int8, | |
max_memory=params.get('max_memory'), | |
no_split_module_classes=model._no_split_modules | |
) | |
if shared.args.disk: | |
params['offload_folder'] = shared.args.disk_cache_dir | |
if shared.args.disable_exllama or shared.args.disable_exllamav2: | |
try: | |
gptq_config = GPTQConfig( | |
bits=config.quantization_config.get('bits', 4), | |
disable_exllama=shared.args.disable_exllama, | |
disable_exllamav2=shared.args.disable_exllamav2, | |
) | |
params['quantization_config'] = gptq_config | |
logger.info(f'Loading with disable_exllama={shared.args.disable_exllama} and disable_exllamav2={shared.args.disable_exllamav2}.') | |
except: | |
exc = traceback.format_exc() | |
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?') | |
print(exc) | |
if shared.args.compress_pos_emb > 1: | |
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb} | |
elif shared.args.alpha_value > 1: | |
params['rope_scaling'] = {'type': 'dynamic', 'factor': RoPE.get_alpha_value(shared.args.alpha_value, shared.args.rope_freq_base)} | |
logger.info("TRANSFORMERS_PARAMS=") | |
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params) | |
print() | |
model = LoaderClass.from_pretrained(path_to_model, **params) | |
return model | |
def llamacpp_loader(model_name): | |
from modules.llamacpp_model import LlamaCppModel | |
path = Path(f'{shared.args.model_dir}/{model_name}') | |
if path.is_file(): | |
model_file = path | |
else: | |
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] | |
logger.info(f"llama.cpp weights detected: \"{model_file}\"") | |
model, tokenizer = LlamaCppModel.from_pretrained(model_file) | |
return model, tokenizer | |
def llamacpp_HF_loader(model_name): | |
from modules.llamacpp_hf import LlamacppHF | |
path = Path(f'{shared.args.model_dir}/{model_name}') | |
# Check if a HF tokenizer is available for the model | |
if all((path / file).exists() for file in ['tokenizer_config.json']): | |
logger.info(f'Using tokenizer from: \"{path}\"') | |
else: | |
logger.error("Could not load the model because a tokenizer in Transformers format was not found.") | |
return None, None | |
model = LlamacppHF.from_pretrained(model_name) | |
return model | |
def AutoAWQ_loader(model_name): | |
from awq import AutoAWQForCausalLM | |
model_dir = Path(f'{shared.args.model_dir}/{model_name}') | |
model = AutoAWQForCausalLM.from_quantized( | |
quant_path=model_dir, | |
max_new_tokens=shared.args.max_seq_len, | |
trust_remote_code=shared.args.trust_remote_code, | |
fuse_layers=not shared.args.no_inject_fused_attention, | |
max_memory=get_max_memory_dict(), | |
batch_size=1, | |
safetensors=any(model_dir.glob('*.safetensors')), | |
) | |
return model | |
def QuipSharp_loader(model_name): | |
try: | |
with RelativeImport("repositories/quip-sharp"): | |
from lib.utils.unsafe_import import model_from_hf_path | |
except: | |
logger.error( | |
"\nQuIP# has not been found. It must be installed manually for now.\n" | |
"For instructions on how to do that, please consult:\n" | |
"https://github.com/oobabooga/text-generation-webui/pull/4803\n" | |
) | |
return None, None | |
# This fixes duplicate logging messages after the import above. | |
handlers = logging.getLogger().handlers | |
if len(handlers) > 1: | |
logging.getLogger().removeHandler(handlers[1]) | |
model_dir = Path(f'{shared.args.model_dir}/{model_name}') | |
if not all((model_dir / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']): | |
logger.error(f"Could not load the model because the tokenizer files could not be found in the model folder. Please download the following files from the original (unquantized) model into {model_dir}: special_tokens_map.json, tokenizer.json, tokenizer.model, tokenizer_config.json.") | |
return None, None | |
model, model_str = model_from_hf_path( | |
model_dir, | |
use_cuda_graph=False, | |
use_flash_attn=not shared.args.no_flash_attn | |
) | |
return model | |
def GPTQ_loader(model_name): | |
# Monkey patch | |
if shared.args.monkey_patch: | |
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") | |
from modules.monkey_patch_gptq_lora import load_model_llama | |
model, _ = load_model_llama(model_name) | |
# No monkey patch | |
else: | |
import modules.GPTQ_loader | |
model = modules.GPTQ_loader.load_quantized(model_name) | |
return model | |
def AutoGPTQ_loader(model_name): | |
import modules.AutoGPTQ_loader | |
return modules.AutoGPTQ_loader.load_quantized(model_name) | |
def ExLlamav2_loader(model_name): | |
from modules.exllamav2 import Exllamav2Model | |
model, tokenizer = Exllamav2Model.from_pretrained(model_name) | |
return model, tokenizer | |
def ExLlamav2_HF_loader(model_name): | |
from modules.exllamav2_hf import Exllamav2HF | |
return Exllamav2HF.from_pretrained(model_name) | |
def HQQ_loader(model_name): | |
from hqq.core.quantize import HQQBackend, HQQLinear | |
from hqq.engine.hf import HQQModelForCausalLM | |
logger.info(f"Loading HQQ model with backend: \"{shared.args.hqq_backend}\"") | |
model_dir = Path(f'{shared.args.model_dir}/{model_name}') | |
model = HQQModelForCausalLM.from_quantized(str(model_dir)) | |
HQQLinear.set_backend(getattr(HQQBackend, shared.args.hqq_backend)) | |
return model | |
def get_max_memory_dict(): | |
max_memory = {} | |
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' | |
if shared.args.gpu_memory: | |
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) | |
for i in range(len(memory_map)): | |
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] | |
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory | |
# If --auto-devices is provided standalone, try to get a reasonable value | |
# for the maximum memory of device :0 | |
elif shared.args.auto_devices: | |
if is_xpu_available(): | |
total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024)) | |
else: | |
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) | |
suggestion = round((total_mem - 1000) / 1000) * 1000 | |
if total_mem - suggestion < 800: | |
suggestion -= 1000 | |
suggestion = int(round(suggestion / 1000)) | |
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") | |
max_memory[0] = f'{suggestion}GiB' | |
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory | |
return max_memory if len(max_memory) > 0 else None | |
def clear_torch_cache(): | |
gc.collect() | |
if not shared.args.cpu: | |
if is_xpu_available(): | |
torch.xpu.empty_cache() | |
else: | |
torch.cuda.empty_cache() | |
def unload_model(): | |
shared.model = shared.tokenizer = None | |
shared.model_name = 'None' | |
shared.lora_names = [] | |
shared.model_dirty_from_training = False | |
clear_torch_cache() | |
def reload_model(): | |
unload_model() | |
shared.model, shared.tokenizer = load_model(shared.model_name) | |