pix2pix-zero-demo / utils /generate_synthetic.py
John6666's picture
Upload 351 files
e84842d verified
raw
history blame
13.3 kB
import os, sys, time, re
import torch
from PIL import Image
import hashlib
from tqdm import tqdm
import openai
from utils.direction_utils import *
p = "submodules/pix2pix-zero/src/utils"
if p not in sys.path:
sys.path.append(p)
from diffusers import DDIMScheduler
from edit_pipeline import EditingPipeline
from ddim_inv import DDIMInversion
from scheduler import DDIMInverseScheduler
from lavis.models import load_model_and_preprocess
from transformers import T5Tokenizer, AutoTokenizer, T5ForConditionalGeneration, BloomForCausalLM
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def load_sentence_embeddings(l_sentences, tokenizer, text_encoder, device=DEVICE):
with torch.no_grad():
l_embeddings = []
for sent in tqdm(l_sentences):
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
l_embeddings.append(prompt_embeds)
return torch.concatenate(l_embeddings, dim=0).mean(dim=0).unsqueeze(0)
def launch_generate_sample(prompt, seed, negative_scale, num_ddim):
os.makedirs("tmp", exist_ok=True)
# do the editing
edit_pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to(DEVICE)
edit_pipe.scheduler = DDIMScheduler.from_config(edit_pipe.scheduler.config)
# set the random seed and sample the input noise map
torch.cuda.manual_seed(int(seed)) if torch.cuda.is_available() else torch.manual_seed(int(seed))
z = torch.randn((1,4,64,64), device=DEVICE)
z_hashname = hashlib.sha256(z.cpu().numpy().tobytes()).hexdigest()
z_inv_fname = f"tmp/{z_hashname}_ddim_{num_ddim}_inv.pt"
torch.save(z, z_inv_fname)
rec_pil = edit_pipe(prompt,
num_inference_steps=num_ddim, x_in=z,
only_sample=True, # this flag will only generate the sampled image, not the edited image
guidance_scale=negative_scale,
negative_prompt="" # use the empty string for the negative prompt
)
# print(rec_pil)
del edit_pipe
torch.cuda.empty_cache()
return rec_pil[0], z_inv_fname
def clean_l_sentences(ls):
s = [re.sub('\d', '', x) for x in ls]
s = [x.replace(".","").replace("-","").replace(")","").strip() for x in s]
return s
def gpt3_compute_word2sentences(task_type, word, num=100):
l_sentences = []
if task_type=="object":
template_prompt = f"Provide many captions for images containing {word}."
elif task_type=="style":
template_prompt = f"Provide many captions for images that are in the {word} style."
while True:
ret = openai.Completion.create(
model="text-davinci-002",
prompt=template_prompt,
max_tokens=1000,
temperature=1.0)
raw_return = ret.choices[0].text
for line in raw_return.split("\n"):
line = line.strip()
if len(line)>10:
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else:
l_sentences.append(line+f", {word}")
time.sleep(0.05)
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
return l_sentences
def flant5xl_compute_word2sentences(word, num=100):
text_input = f"Provide a caption for images containing a {word}. The captions should be in English and should be no longer than 150 characters."
l_sentences = []
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
input_ids = tokenizer(text_input, return_tensors="pt").input_ids.to(DEVICE)
input_length = input_ids.shape[1]
while True:
outputs = model.generate(input_ids,temperature=0.9, num_return_sequences=16, do_sample=True, max_length=128)
output = tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
for line in output:
line = line.strip()
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else: l_sentences.append(line+f", {word}")
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
del model
del tokenizer
torch.cuda.empty_cache()
return l_sentences
def bloomz_compute_sentences(word, num=100):
l_sentences = []
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-7b1")
model = BloomForCausalLM.from_pretrained("bigscience/bloomz-7b1", device_map="auto", torch_dtype=torch.float16)
input_text = f"Provide a caption for images containing a {word}. The captions should be in English and should be no longer than 150 characters. Caption:"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(DEVICE)
input_length = input_ids.shape[1]
t = 0.95
eta = 1e-5
min_length = 15
while True:
try:
outputs = model.generate(input_ids,temperature=t, num_return_sequences=16, do_sample=True, max_length=128, min_length=min_length, eta_cutoff=eta)
output = tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
except:
continue
for line in output:
line = line.strip()
skip=False
for subword in word.split(" "):
if subword not in line: skip=True
if not skip: l_sentences.append(line)
else: l_sentences.append(line+f", {word}")
print(len(l_sentences))
if len(l_sentences)>=num:
break
l_sentences = clean_l_sentences(l_sentences)
del model
del tokenizer
torch.cuda.empty_cache()
return l_sentences
def make_custom_dir(description, sent_type, api_key, org_key, l_custom_sentences):
if sent_type=="fixed-template":
l_sentences = generate_image_prompts_with_templates(description)
elif "GPT3" in sent_type:
import openai
openai.organization = org_key
openai.api_key = api_key
_=openai.Model.retrieve("text-davinci-002")
l_sentences = gpt3_compute_word2sentences("object", description, num=1000)
elif "flan-t5-xl" in sent_type:
l_sentences = flant5xl_compute_word2sentences(description, num=1000)
# save the sentences to file
with open(f"tmp/flant5xl_sentences_{description}.txt", "w") as f:
for line in l_sentences:
f.write(line+"\n")
elif "BLOOMZ-7B" in sent_type:
l_sentences = bloomz_compute_sentences(description, num=1000)
# save the sentences to file
with open(f"tmp/bloomz_sentences_{description}.txt", "w") as f:
for line in l_sentences:
f.write(line+"\n")
elif sent_type=="custom sentences":
l_sentences = l_custom_sentences.split("\n")
print(f"length of new sentence is {len(l_sentences)}")
pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to(DEVICE)
emb = load_sentence_embeddings(l_sentences, pipe.tokenizer, pipe.text_encoder, device=DEVICE)
del pipe
torch.cuda.empty_cache()
return emb
def launch_main(img_in_real, img_in_synth, src, src_custom, dest, dest_custom, num_ddim, xa_guidance, edit_mul, fpath_z_gen, gen_prompt, sent_type_src, sent_type_dest, api_key, org_key, custom_sentences_src, custom_sentences_dest):
d_name2desc = get_all_directions_names()
d_desc2name = {v:k for k,v in d_name2desc.items()}
os.makedirs("tmp", exist_ok=True)
# generate custom direction first
if src=="make your own!":
outf_name = f"tmp/template_emb_{src_custom}_{sent_type_src}.pt"
if not os.path.exists(outf_name):
src_emb = make_custom_dir(src_custom, sent_type_src, api_key, org_key, custom_sentences_src)
torch.save(src_emb, outf_name)
else:
src_emb = torch.load(outf_name, map_location=torch.device('cpu'), weights_only=True)
else:
src_emb = get_emb(d_desc2name[src])
if dest=="make your own!":
outf_name = f"tmp/template_emb_{dest_custom}_{sent_type_dest}.pt"
if not os.path.exists(outf_name):
dest_emb = make_custom_dir(dest_custom, sent_type_dest, api_key, org_key, custom_sentences_dest)
torch.save(dest_emb, outf_name)
else:
dest_emb = torch.load(outf_name, map_location=torch.device('cpu'), weights_only=True)
else:
dest_emb = get_emb(d_desc2name[dest])
text_dir = (dest_emb.to(DEVICE) - src_emb.to(DEVICE))*edit_mul
if img_in_real is not None and img_in_synth is None:
print("using real image")
# resize the image so that the longer side is 512
width, height = img_in_real.size
if width > height: scale_factor = 512 / width
else: scale_factor = 512 / height
new_size = (int(width * scale_factor), int(height * scale_factor))
img_in_real = img_in_real.resize(new_size, Image.Resampling.LANCZOS)
hash = hashlib.sha256(img_in_real.tobytes()).hexdigest()
# print(hash)
inv_fname = f"tmp/{hash}_ddim_{num_ddim}_inv.pt"
caption_fname = f"tmp/{hash}_caption.txt"
# make the caption if it hasn't been made before
if not os.path.exists(caption_fname):
# BLIP
model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=torch.device(DEVICE))
_image = vis_processors["eval"](img_in_real).unsqueeze(0).to(DEVICE)
prompt_str = model_blip.generate({"image": _image})[0]
del model_blip
torch.cuda.empty_cache()
with open(caption_fname, "w") as f:
f.write(prompt_str)
else:
prompt_str = open(caption_fname, "r").read().strip()
print(f"CAPTION: {prompt_str}")
# do the inversion if it hasn't been done before
if not os.path.exists(inv_fname):
# inversion pipeline
pipe_inv = DDIMInversion.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to(DEVICE)
pipe_inv.scheduler = DDIMInverseScheduler.from_config(pipe_inv.scheduler.config)
x_inv, x_inv_image, x_dec_img = pipe_inv( prompt_str,
guidance_scale=1, num_inversion_steps=num_ddim,
img=img_in_real, torch_dtype=torch.float32 )
x_inv = x_inv.detach()
torch.save(x_inv, inv_fname)
del pipe_inv
torch.cuda.empty_cache()
else:
x_inv = torch.load(inv_fname, map_location=torch.device('cpu'), weights_only=True)
# do the editing
edit_pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to(DEVICE)
edit_pipe.scheduler = DDIMScheduler.from_config(edit_pipe.scheduler.config)
_, edit_pil = edit_pipe(prompt_str,
num_inference_steps=num_ddim,
x_in=x_inv,
edit_dir=text_dir,
guidance_amount=xa_guidance,
guidance_scale=5.0,
negative_prompt=prompt_str # use the unedited prompt for the negative prompt
)
del edit_pipe
torch.cuda.empty_cache()
return edit_pil[0]
elif img_in_real is None and img_in_synth is not None:
print("using synthetic image")
x_inv = torch.load(fpath_z_gen, map_location=torch.device('cpu'), weights_only=True)
pipe = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32).to(DEVICE)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
rec_pil, edit_pil = pipe(gen_prompt,
num_inference_steps=num_ddim,
x_in=x_inv,
edit_dir=text_dir,
guidance_amount=xa_guidance,
guidance_scale=5,
negative_prompt="" # use the empty string for the negative prompt
)
del pipe
torch.cuda.empty_cache()
return edit_pil[0]
else:
raise ValueError(f"Invalid image type found: {img_in_real} {img_in_synth}")
if __name__=="__main__":
print(flant5xl_compute_word2sentences("cat wearing sunglasses", num=100))