File size: 17,356 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import (
    DiffusionPipeline,
    UnCLIPImageVariationPipeline,
    UnCLIPScheduler,
    UNet2DConditionModel,
    UNet2DModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
    require_torch_gpu,
    skip_mps,
    torch_device,
)

from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPImageVariationPipeline
    params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
    batch_params = IMAGE_VARIATION_BATCH_PARAMS

    required_optional_params = [
        "generator",
        "return_dict",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
    test_xformers_attention = False

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            num_hidden_layers=5,
            num_attention_heads=4,
            image_size=32,
            intermediate_size=37,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
            "sample_size": 32,
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
            "sample_size": 64,
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    def get_dummy_components(self):
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)

        image_encoder = self.dummy_image_encoder

        return {
            "decoder": decoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_proj": text_proj,
            "feature_extractor": feature_extractor,
            "image_encoder": image_encoder,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }

    def get_dummy_inputs(self, device, seed=0, pil_image=True):
        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "image": input_image,
            "generator": generator,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "np",
        }

    def test_unclip_image_variation_input_tensor(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)

        output = pipe(**pipeline_inputs)
        image = output.images

        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array(
            [
                0.9997,
                0.0002,
                0.9997,
                0.9997,
                0.9969,
                0.0023,
                0.9997,
                0.9969,
                0.9970,
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_image(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)

        output = pipe(**pipeline_inputs)
        image = output.images

        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_list_images(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
        pipeline_inputs["image"] = [
            pipeline_inputs["image"],
            pipeline_inputs["image"],
        ]

        output = pipe(**pipeline_inputs)
        image = output.images

        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
        tuple_pipeline_inputs["image"] = [
            tuple_pipeline_inputs["image"],
            tuple_pipeline_inputs["image"],
        ]

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (2, 64, 64, 3)

        expected_slice = np.array(
            [
                0.9997,
                0.9989,
                0.0008,
                0.0021,
                0.9960,
                0.0018,
                0.0014,
                0.0002,
                0.9933,
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_passed_image_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(0)
        dtype = pipe.decoder.dtype
        batch_size = 1

        shape = (
            batch_size,
            pipe.decoder.config.in_channels,
            pipe.decoder.config.sample_size,
            pipe.decoder.config.sample_size,
        )
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
            pipe.super_res_first.config.in_channels // 2,
            pipe.super_res_first.config.sample_size,
            pipe.super_res_first.config.sample_size,
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)

        img_out_1 = pipe(
            **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
        ).images

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
        # Don't pass image, instead pass embedding
        image = pipeline_inputs.pop("image")
        image_embeddings = pipe.image_encoder(image).image_embeds

        img_out_2 = pipe(
            **pipeline_inputs,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            image_embeddings=image_embeddings,
        ).images

        # make sure passing text embeddings manually is identical
        assert np.abs(img_out_1 - img_out_2).max() < 1e-4

    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

        # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
        expected_max_diff = 1e-2

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
        )

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
    @unittest.skip("UnCLIP produces very large differences. Test is not useful.")
    @skip_mps
    def test_inference_batch_single_identical(self):
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
        self._test_inference_batch_single_identical(
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
        )

    def test_inference_batch_consistent(self):
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
        else:
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @unittest.skip("UnCLIP produces very large difference. Test is not useful.")
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local(expected_max_difference=4e-3)

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.")
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1.0)


@nightly
@require_torch_gpu
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_image_variation_karlo(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
        )

        pipeline = UnCLIPImageVariationPipeline.from_pretrained(
            "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipeline(
            input_image,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)

        assert_mean_pixel_difference(image, expected_image, 15)