Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,356 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = UnCLIPImageVariationPipeline
params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
batch_params = IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = [
"generator",
"return_dict",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 100
@property
def dummy_tokenizer(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModelWithProjection(config)
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
projection_dim=self.text_embedder_hidden_size,
num_hidden_layers=5,
num_attention_heads=4,
image_size=32,
intermediate_size=37,
patch_size=1,
)
return CLIPVisionModelWithProjection(config)
@property
def dummy_text_proj(self):
torch.manual_seed(0)
model_kwargs = {
"clip_embeddings_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"cross_attention_dim": self.cross_attention_dim,
}
model = UnCLIPTextProjModel(**model_kwargs)
return model
@property
def dummy_decoder(self):
torch.manual_seed(0)
model_kwargs = {
"sample_size": 32,
# RGB in channels
"in_channels": 3,
# Out channels is double in channels because predicts mean and variance
"out_channels": 6,
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": "identity",
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_super_res_kwargs(self):
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def dummy_super_res_first(self):
torch.manual_seed(0)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
@property
def dummy_super_res_last(self):
# seeded differently to get different unet than `self.dummy_super_res_first`
torch.manual_seed(1)
model = UNet2DModel(**self.dummy_super_res_kwargs)
return model
def get_dummy_components(self):
decoder = self.dummy_decoder
text_proj = self.dummy_text_proj
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
super_res_first = self.dummy_super_res_first
super_res_last = self.dummy_super_res_last
decoder_scheduler = UnCLIPScheduler(
variance_type="learned_range",
prediction_type="epsilon",
num_train_timesteps=1000,
)
super_res_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="epsilon",
num_train_timesteps=1000,
)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
image_encoder = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def get_dummy_inputs(self, device, seed=0, pil_image=True):
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
if pil_image:
input_image = input_image * 0.5 + 0.5
input_image = input_image.clamp(0, 1)
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def test_unclip_image_variation_input_tensor(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array(
[
0.9997,
0.0002,
0.9997,
0.9997,
0.9969,
0.0023,
0.9997,
0.9969,
0.9970,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_image_variation_input_image(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_image_variation_input_list_images(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
pipeline_inputs["image"] = [
pipeline_inputs["image"],
pipeline_inputs["image"],
]
output = pipe(**pipeline_inputs)
image = output.images
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
tuple_pipeline_inputs["image"] = [
tuple_pipeline_inputs["image"],
tuple_pipeline_inputs["image"],
]
image_from_tuple = pipe(
**tuple_pipeline_inputs,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array(
[
0.9997,
0.9989,
0.0008,
0.0021,
0.9960,
0.0018,
0.0014,
0.0002,
0.9933,
]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_unclip_passed_image_embed(self):
device = torch.device("cpu")
class DummyScheduler:
init_noise_sigma = 1
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(0)
dtype = pipe.decoder.dtype
batch_size = 1
shape = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
decoder_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
shape = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
super_res_latents = pipe.prepare_latents(
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
)
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
img_out_1 = pipe(
**pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
).images
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
# Don't pass image, instead pass embedding
image = pipeline_inputs.pop("image")
image_embeddings = pipe.image_encoder(image).image_embeds
img_out_2 = pipe(
**pipeline_inputs,
decoder_latents=decoder_latents,
super_res_latents=super_res_latents,
image_embeddings=image_embeddings,
).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_1 - img_out_2).max() < 1e-4
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because UnCLIP GPU undeterminism requires a looser check.
@skip_mps
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device == "cpu"
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
expected_max_diff = 1e-2
self._test_attention_slicing_forward_pass(
test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because UnCLIP undeterminism requires a looser check.
@unittest.skip("UnCLIP produces very large differences. Test is not useful.")
@skip_mps
def test_inference_batch_single_identical(self):
additional_params_copy_to_batched_inputs = [
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
self._test_inference_batch_single_identical(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
)
def test_inference_batch_consistent(self):
additional_params_copy_to_batched_inputs = [
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
batch_sizes = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=batch_sizes,
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
)
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
)
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@unittest.skip("UnCLIP produces very large difference. Test is not useful.")
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local(expected_max_difference=4e-3)
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.")
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1.0)
@nightly
@require_torch_gpu
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_unclip_image_variation_karlo(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
)
pipeline = UnCLIPImageVariationPipeline.from_pretrained(
"kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
)
pipeline = pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipeline(
input_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert_mean_pixel_difference(image, expected_image, 15)
|