File size: 53,997 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 Harutatsu Akiyama and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import math
import os
import shutil
import warnings
from contextlib import nullcontext
from pathlib import Path
from urllib.parse import urlparse

import accelerate
import datasets
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_instruct_pix2pix import (
    StableDiffusionXLInstructPix2PixPipeline,
)
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module


if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.30.0.dev0")

logger = get_logger(__name__, log_level="INFO")

DATASET_NAME_MAPPING = {
    "fusing/instructpix2pix-1000-samples": ("file_name", "edited_image", "edit_prompt"),
}
WANDB_TABLE_COL_NAMES = ["file_name", "edited_image", "edit_prompt"]
TORCH_DTYPE_MAPPING = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}


def log_validation(pipeline, args, accelerator, generator, global_step, is_final_validation=False):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )

    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    val_save_dir = os.path.join(args.output_dir, "validation_images")
    if not os.path.exists(val_save_dir):
        os.makedirs(val_save_dir)

    original_image = (
        lambda image_url_or_path: load_image(image_url_or_path)
        if urlparse(image_url_or_path).scheme
        else Image.open(image_url_or_path).convert("RGB")
    )(args.val_image_url_or_path)

    if torch.backends.mps.is_available():
        autocast_ctx = nullcontext()
    else:
        autocast_ctx = torch.autocast(accelerator.device.type)

    with autocast_ctx:
        edited_images = []
        # Run inference
        for val_img_idx in range(args.num_validation_images):
            a_val_img = pipeline(
                args.validation_prompt,
                image=original_image,
                num_inference_steps=20,
                image_guidance_scale=1.5,
                guidance_scale=7,
                generator=generator,
            ).images[0]
            edited_images.append(a_val_img)
            # Save validation images
            a_val_img.save(os.path.join(val_save_dir, f"step_{global_step}_val_img_{val_img_idx}.png"))

    for tracker in accelerator.trackers:
        if tracker.name == "wandb":
            wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES)
            for edited_image in edited_images:
                wandb_table.add_data(wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt)
            logger_name = "test" if is_final_validation else "validation"
            tracker.log({logger_name: wandb_table})


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args():
    parser = argparse.ArgumentParser(description="Script to train Stable Diffusion XL for InstructPix2Pix.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
    )
    parser.add_argument(
        "--vae_precision",
        type=str,
        choices=["fp32", "fp16", "bf16"],
        default="fp32",
        help=(
            "The vanilla SDXL 1.0 VAE can cause NaNs due to large activation values. Some custom models might already have a solution"
            " to this problem, and this flag allows you to use mixed precision to stabilize training."
        ),
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--original_image_column",
        type=str,
        default="input_image",
        help="The column of the dataset containing the original image on which edits where made.",
    )
    parser.add_argument(
        "--edited_image_column",
        type=str,
        default="edited_image",
        help="The column of the dataset containing the edited image.",
    )
    parser.add_argument(
        "--edit_prompt_column",
        type=str,
        default="edit_prompt",
        help="The column of the dataset containing the edit instruction.",
    )
    parser.add_argument(
        "--val_image_url_or_path",
        type=str,
        default=None,
        help="URL to the original image that you would like to edit (used during inference for debugging purposes).",
    )
    parser.add_argument(
        "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference."
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run fine-tuning validation every X steps. The validation process consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="instruct-pix2pix-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=256,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this resolution."
        ),
    )
    parser.add_argument(
        "--crops_coords_top_left_h",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--crops_coords_top_left_w",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--conditioning_dropout_prob",
        type=float,
        default=None,
        help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.",
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Need either a dataset name or a training folder.")

    # default to using the same revision for the non-ema model if not specified
    if args.non_ema_revision is None:
        args.non_ema_revision = args.revision

    return args


def convert_to_np(image, resolution):
    if isinstance(image, str):
        image = PIL.Image.open(image)
    image = image.convert("RGB").resize((resolution, resolution))
    return np.array(image).transpose(2, 0, 1)


def main():
    args = parse_args()

    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    if args.non_ema_revision is not None:
        deprecate(
            "non_ema_revision!=None",
            "0.15.0",
            message=(
                "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
                " use `--variant=non_ema` instead."
            ),
        )
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )

    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    vae_path = (
        args.pretrained_model_name_or_path
        if args.pretrained_vae_model_name_or_path is None
        else args.pretrained_vae_model_name_or_path
    )
    vae = AutoencoderKL.from_pretrained(
        vae_path,
        subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
        revision=args.revision,
        variant=args.variant,
    )
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
    )

    # InstructPix2Pix uses an additional image for conditioning. To accommodate that,
    # it uses 8 channels (instead of 4) in the first (conv) layer of the UNet. This UNet is
    # then fine-tuned on the custom InstructPix2Pix dataset. This modified UNet is initialized
    # from the pre-trained checkpoints. For the extra channels added to the first layer, they are
    # initialized to zero.
    logger.info("Initializing the XL InstructPix2Pix UNet from the pretrained UNet.")
    in_channels = 8
    out_channels = unet.conv_in.out_channels
    unet.register_to_config(in_channels=in_channels)

    with torch.no_grad():
        new_conv_in = nn.Conv2d(
            in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding
        )
        new_conv_in.weight.zero_()
        new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
        unet.conv_in = new_conv_in

    # Create EMA for the unet.
    if args.use_ema:
        ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warning(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))

                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))

                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel)
                ema_unet.load_state_dict(load_model.state_dict())
                ema_unet.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        unet.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
        )
    else:
        data_files = {}
        if args.train_data_dir is not None:
            data_files["train"] = os.path.join(args.train_data_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
    if args.original_image_column is None:
        original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        original_image_column = args.original_image_column
        if original_image_column not in column_names:
            raise ValueError(
                f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.edit_prompt_column is None:
        edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        edit_prompt_column = args.edit_prompt_column
        if edit_prompt_column not in column_names:
            raise ValueError(
                f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.edited_image_column is None:
        edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
    else:
        edited_image_column = args.edited_image_column
        if edited_image_column not in column_names:
            raise ValueError(
                f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}"
            )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        warnings.warn(f"weight_dtype {weight_dtype} may cause nan during vae encoding", UserWarning)

    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        warnings.warn(f"weight_dtype {weight_dtype} may cause nan during vae encoding", UserWarning)

    # Preprocessing the datasets.
    # We need to tokenize input captions and transform the images.
    def tokenize_captions(captions, tokenizer):
        inputs = tokenizer(
            captions,
            max_length=tokenizer.model_max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )
        return inputs.input_ids

    # Preprocessing the datasets.
    train_transforms = transforms.Compose(
        [
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
        ]
    )

    def preprocess_images(examples):
        original_images = np.concatenate(
            [convert_to_np(image, args.resolution) for image in examples[original_image_column]]
        )
        edited_images = np.concatenate(
            [convert_to_np(image, args.resolution) for image in examples[edited_image_column]]
        )
        # We need to ensure that the original and the edited images undergo the same
        # augmentation transforms.
        images = np.concatenate([original_images, edited_images])
        images = torch.tensor(images)
        images = 2 * (images / 255) - 1
        return train_transforms(images)

    # Load scheduler, tokenizer and models.
    tokenizer_1 = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        use_fast=False,
    )
    tokenizer_2 = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
        use_fast=False,
    )
    text_encoder_cls_1 = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
    text_encoder_cls_2 = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder_1 = text_encoder_cls_1.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    text_encoder_2 = text_encoder_cls_2.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
    )

    # We ALWAYS pre-compute the additional condition embeddings needed for SDXL
    # UNet as the model is already big and it uses two text encoders.
    text_encoder_1.to(accelerator.device, dtype=weight_dtype)
    text_encoder_2.to(accelerator.device, dtype=weight_dtype)
    tokenizers = [tokenizer_1, tokenizer_2]
    text_encoders = [text_encoder_1, text_encoder_2]

    # Freeze vae and text_encoders
    vae.requires_grad_(False)
    text_encoder_1.requires_grad_(False)
    text_encoder_2.requires_grad_(False)

    # Set UNet to trainable.
    unet.train()

    # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
    def encode_prompt(text_encoders, tokenizers, prompt):
        prompt_embeds_list = []

        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_embeds = text_encoder(
                text_input_ids.to(text_encoder.device),
                output_hidden_states=True,
            )

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            bs_embed, seq_len, _ = prompt_embeds.shape
            prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
        pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
        return prompt_embeds, pooled_prompt_embeds

    # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
    def encode_prompts(text_encoders, tokenizers, prompts):
        prompt_embeds_all = []
        pooled_prompt_embeds_all = []

        for prompt in prompts:
            prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
            prompt_embeds_all.append(prompt_embeds)
            pooled_prompt_embeds_all.append(pooled_prompt_embeds)

        return torch.stack(prompt_embeds_all), torch.stack(pooled_prompt_embeds_all)

    # Adapted from examples.dreambooth.train_dreambooth_lora_sdxl
    # Here, we compute not just the text embeddings but also the additional embeddings
    # needed for the SD XL UNet to operate.
    def compute_embeddings_for_prompts(prompts, text_encoders, tokenizers):
        with torch.no_grad():
            prompt_embeds_all, pooled_prompt_embeds_all = encode_prompts(text_encoders, tokenizers, prompts)
            add_text_embeds_all = pooled_prompt_embeds_all

            prompt_embeds_all = prompt_embeds_all.to(accelerator.device)
            add_text_embeds_all = add_text_embeds_all.to(accelerator.device)
        return prompt_embeds_all, add_text_embeds_all

    # Get null conditioning
    def compute_null_conditioning():
        null_conditioning_list = []
        for a_tokenizer, a_text_encoder in zip(tokenizers, text_encoders):
            null_conditioning_list.append(
                a_text_encoder(
                    tokenize_captions([""], tokenizer=a_tokenizer).to(accelerator.device),
                    output_hidden_states=True,
                ).hidden_states[-2]
            )
        return torch.concat(null_conditioning_list, dim=-1)

    null_conditioning = compute_null_conditioning()

    def compute_time_ids():
        crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
        original_size = target_size = (args.resolution, args.resolution)
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids], dtype=weight_dtype)
        return add_time_ids.to(accelerator.device).repeat(args.train_batch_size, 1)

    add_time_ids = compute_time_ids()

    def preprocess_train(examples):
        # Preprocess images.
        preprocessed_images = preprocess_images(examples)
        # Since the original and edited images were concatenated before
        # applying the transformations, we need to separate them and reshape
        # them accordingly.
        original_images, edited_images = preprocessed_images.chunk(2)
        original_images = original_images.reshape(-1, 3, args.resolution, args.resolution)
        edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution)

        # Collate the preprocessed images into the `examples`.
        examples["original_pixel_values"] = original_images
        examples["edited_pixel_values"] = edited_images

        # Preprocess the captions.
        captions = list(examples[edit_prompt_column])
        prompt_embeds_all, add_text_embeds_all = compute_embeddings_for_prompts(captions, text_encoders, tokenizers)
        examples["prompt_embeds"] = prompt_embeds_all
        examples["add_text_embeds"] = add_text_embeds_all
        return examples

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)

    def collate_fn(examples):
        original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples])
        original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float()
        edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples])
        edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float()
        prompt_embeds = torch.concat([example["prompt_embeds"] for example in examples], dim=0)
        add_text_embeds = torch.concat([example["add_text_embeds"] for example in examples], dim=0)
        return {
            "original_pixel_values": original_pixel_values,
            "edited_pixel_values": edited_pixel_values,
            "prompt_embeds": prompt_embeds,
            "add_text_embeds": add_text_embeds,
        }

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )

    if args.use_ema:
        ema_unet.to(accelerator.device)

    # Move vae, unet and text_encoder to device and cast to weight_dtype
    # The VAE is in float32 to avoid NaN losses.
    if args.pretrained_vae_model_name_or_path is not None:
        vae.to(accelerator.device, dtype=weight_dtype)
    else:
        vae.to(accelerator.device, dtype=TORCH_DTYPE_MAPPING[args.vae_precision])

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("instruct-pix2pix-xl", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    for epoch in range(first_epoch, args.num_train_epochs):
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
                # We want to learn the denoising process w.r.t the edited images which
                # are conditioned on the original image (which was edited) and the edit instruction.
                # So, first, convert images to latent space.
                if args.pretrained_vae_model_name_or_path is not None:
                    edited_pixel_values = batch["edited_pixel_values"].to(dtype=weight_dtype)
                else:
                    edited_pixel_values = batch["edited_pixel_values"]
                latents = vae.encode(edited_pixel_values).latent_dist.sample()
                latents = latents * vae.config.scaling_factor
                if args.pretrained_vae_model_name_or_path is None:
                    latents = latents.to(weight_dtype)

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # SDXL additional inputs
                encoder_hidden_states = batch["prompt_embeds"]
                add_text_embeds = batch["add_text_embeds"]

                # Get the additional image embedding for conditioning.
                # Instead of getting a diagonal Gaussian here, we simply take the mode.
                if args.pretrained_vae_model_name_or_path is not None:
                    original_pixel_values = batch["original_pixel_values"].to(dtype=weight_dtype)
                else:
                    original_pixel_values = batch["original_pixel_values"]
                original_image_embeds = vae.encode(original_pixel_values).latent_dist.sample()
                if args.pretrained_vae_model_name_or_path is None:
                    original_image_embeds = original_image_embeds.to(weight_dtype)

                # Conditioning dropout to support classifier-free guidance during inference. For more details
                # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
                if args.conditioning_dropout_prob is not None:
                    random_p = torch.rand(bsz, device=latents.device, generator=generator)
                    # Sample masks for the edit prompts.
                    prompt_mask = random_p < 2 * args.conditioning_dropout_prob
                    prompt_mask = prompt_mask.reshape(bsz, 1, 1)
                    # Final text conditioning.
                    encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)

                    # Sample masks for the original images.
                    image_mask_dtype = original_image_embeds.dtype
                    image_mask = 1 - (
                        (random_p >= args.conditioning_dropout_prob).to(image_mask_dtype)
                        * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype)
                    )
                    image_mask = image_mask.reshape(bsz, 1, 1, 1)
                    # Final image conditioning.
                    original_image_embeds = image_mask * original_image_embeds

                # Concatenate the `original_image_embeds` with the `noisy_latents`.
                concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1)

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                # Predict the noise residual and compute loss
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

                model_pred = unet(
                    concatenated_noisy_latents,
                    timesteps,
                    encoder_hidden_states,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if args.use_ema:
                    ema_unet.step(unet.parameters())
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            ### BEGIN: Perform validation every `validation_epochs` steps
            if global_step % args.validation_steps == 0:
                if (args.val_image_url_or_path is not None) and (args.validation_prompt is not None):
                    # create pipeline
                    if args.use_ema:
                        # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                        ema_unet.store(unet.parameters())
                        ema_unet.copy_to(unet.parameters())

                    # The models need unwrapping because for compatibility in distributed training mode.
                    pipeline = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
                        args.pretrained_model_name_or_path,
                        unet=unwrap_model(unet),
                        text_encoder=text_encoder_1,
                        text_encoder_2=text_encoder_2,
                        tokenizer=tokenizer_1,
                        tokenizer_2=tokenizer_2,
                        vae=vae,
                        revision=args.revision,
                        variant=args.variant,
                        torch_dtype=weight_dtype,
                    )

                    log_validation(
                        pipeline,
                        args,
                        accelerator,
                        generator,
                        global_step,
                        is_final_validation=False,
                    )

                    if args.use_ema:
                        # Switch back to the original UNet parameters.
                        ema_unet.restore(unet.parameters())

                    del pipeline
                    torch.cuda.empty_cache()
            ### END: Perform validation every `validation_epochs` steps

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        if args.use_ema:
            ema_unet.copy_to(unet.parameters())

        pipeline = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            text_encoder=text_encoder_1,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer_1,
            tokenizer_2=tokenizer_2,
            vae=vae,
            unet=unwrap_model(unet),
            revision=args.revision,
            variant=args.variant,
        )

        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

        if (args.val_image_url_or_path is not None) and (args.validation_prompt is not None):
            log_validation(
                pipeline,
                args,
                accelerator,
                generator,
                global_step,
                is_final_validation=True,
            )

    accelerator.end_training()


if __name__ == "__main__":
    main()