File size: 6,905 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import time
from pathlib import Path
from typing import Any, Dict, Literal

import torch

from diffusers import AsymmetricAutoencoderKL


ASYMMETRIC_AUTOENCODER_KL_x_1_5_CONFIG = {
    "in_channels": 3,
    "out_channels": 3,
    "down_block_types": [
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
    ],
    "down_block_out_channels": [128, 256, 512, 512],
    "layers_per_down_block": 2,
    "up_block_types": [
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
    ],
    "up_block_out_channels": [192, 384, 768, 768],
    "layers_per_up_block": 3,
    "act_fn": "silu",
    "latent_channels": 4,
    "norm_num_groups": 32,
    "sample_size": 256,
    "scaling_factor": 0.18215,
}

ASYMMETRIC_AUTOENCODER_KL_x_2_CONFIG = {
    "in_channels": 3,
    "out_channels": 3,
    "down_block_types": [
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
        "DownEncoderBlock2D",
    ],
    "down_block_out_channels": [128, 256, 512, 512],
    "layers_per_down_block": 2,
    "up_block_types": [
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
        "UpDecoderBlock2D",
    ],
    "up_block_out_channels": [256, 512, 1024, 1024],
    "layers_per_up_block": 5,
    "act_fn": "silu",
    "latent_channels": 4,
    "norm_num_groups": 32,
    "sample_size": 256,
    "scaling_factor": 0.18215,
}


def convert_asymmetric_autoencoder_kl_state_dict(original_state_dict: Dict[str, Any]) -> Dict[str, Any]:
    converted_state_dict = {}
    for k, v in original_state_dict.items():
        if k.startswith("encoder."):
            converted_state_dict[
                k.replace("encoder.down.", "encoder.down_blocks.")
                .replace("encoder.mid.", "encoder.mid_block.")
                .replace("encoder.norm_out.", "encoder.conv_norm_out.")
                .replace(".downsample.", ".downsamplers.0.")
                .replace(".nin_shortcut.", ".conv_shortcut.")
                .replace(".block.", ".resnets.")
                .replace(".block_1.", ".resnets.0.")
                .replace(".block_2.", ".resnets.1.")
                .replace(".attn_1.k.", ".attentions.0.to_k.")
                .replace(".attn_1.q.", ".attentions.0.to_q.")
                .replace(".attn_1.v.", ".attentions.0.to_v.")
                .replace(".attn_1.proj_out.", ".attentions.0.to_out.0.")
                .replace(".attn_1.norm.", ".attentions.0.group_norm.")
            ] = v
        elif k.startswith("decoder.") and "up_layers" not in k:
            converted_state_dict[
                k.replace("decoder.encoder.", "decoder.condition_encoder.")
                .replace(".norm_out.", ".conv_norm_out.")
                .replace(".up.0.", ".up_blocks.3.")
                .replace(".up.1.", ".up_blocks.2.")
                .replace(".up.2.", ".up_blocks.1.")
                .replace(".up.3.", ".up_blocks.0.")
                .replace(".block.", ".resnets.")
                .replace("mid", "mid_block")
                .replace(".0.upsample.", ".0.upsamplers.0.")
                .replace(".1.upsample.", ".1.upsamplers.0.")
                .replace(".2.upsample.", ".2.upsamplers.0.")
                .replace(".nin_shortcut.", ".conv_shortcut.")
                .replace(".block_1.", ".resnets.0.")
                .replace(".block_2.", ".resnets.1.")
                .replace(".attn_1.k.", ".attentions.0.to_k.")
                .replace(".attn_1.q.", ".attentions.0.to_q.")
                .replace(".attn_1.v.", ".attentions.0.to_v.")
                .replace(".attn_1.proj_out.", ".attentions.0.to_out.0.")
                .replace(".attn_1.norm.", ".attentions.0.group_norm.")
            ] = v
        elif k.startswith("quant_conv."):
            converted_state_dict[k] = v
        elif k.startswith("post_quant_conv."):
            converted_state_dict[k] = v
        else:
            print(f"  skipping key `{k}`")
    # fix weights shape
    for k, v in converted_state_dict.items():
        if (
            (k.startswith("encoder.mid_block.attentions.0") or k.startswith("decoder.mid_block.attentions.0"))
            and k.endswith("weight")
            and ("to_q" in k or "to_k" in k or "to_v" in k or "to_out" in k)
        ):
            converted_state_dict[k] = converted_state_dict[k][:, :, 0, 0]

    return converted_state_dict


def get_asymmetric_autoencoder_kl_from_original_checkpoint(
    scale: Literal["1.5", "2"], original_checkpoint_path: str, map_location: torch.device
) -> AsymmetricAutoencoderKL:
    print("Loading original state_dict")
    original_state_dict = torch.load(original_checkpoint_path, map_location=map_location)
    original_state_dict = original_state_dict["state_dict"]
    print("Converting state_dict")
    converted_state_dict = convert_asymmetric_autoencoder_kl_state_dict(original_state_dict)
    kwargs = ASYMMETRIC_AUTOENCODER_KL_x_1_5_CONFIG if scale == "1.5" else ASYMMETRIC_AUTOENCODER_KL_x_2_CONFIG
    print("Initializing AsymmetricAutoencoderKL model")
    asymmetric_autoencoder_kl = AsymmetricAutoencoderKL(**kwargs)
    print("Loading weight from converted state_dict")
    asymmetric_autoencoder_kl.load_state_dict(converted_state_dict)
    asymmetric_autoencoder_kl.eval()
    print("AsymmetricAutoencoderKL successfully initialized")
    return asymmetric_autoencoder_kl


if __name__ == "__main__":
    start = time.time()
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--scale",
        default=None,
        type=str,
        required=True,
        help="Asymmetric VQGAN scale: `1.5` or `2`",
    )
    parser.add_argument(
        "--original_checkpoint_path",
        default=None,
        type=str,
        required=True,
        help="Path to the original Asymmetric VQGAN checkpoint",
    )
    parser.add_argument(
        "--output_path",
        default=None,
        type=str,
        required=True,
        help="Path to save pretrained AsymmetricAutoencoderKL model",
    )
    parser.add_argument(
        "--map_location",
        default="cpu",
        type=str,
        required=False,
        help="The device passed to `map_location` when loading the checkpoint",
    )
    args = parser.parse_args()

    assert args.scale in ["1.5", "2"], f"{args.scale} should be `1.5` of `2`"
    assert Path(args.original_checkpoint_path).is_file()

    asymmetric_autoencoder_kl = get_asymmetric_autoencoder_kl_from_original_checkpoint(
        scale=args.scale,
        original_checkpoint_path=args.original_checkpoint_path,
        map_location=torch.device(args.map_location),
    )
    print("Saving pretrained AsymmetricAutoencoderKL")
    asymmetric_autoencoder_kl.save_pretrained(args.output_path)
    print(f"Done in {time.time() - start:.2f} seconds")