Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,723 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
TEST_UNET_CONFIG = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1000,
"block_out_channels": [32, 64],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
IMAGENET_64_UNET_CONFIG = {
"sample_size": 64,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1000,
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
LSUN_256_UNET_CONFIG = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
CD_SCHEDULER_CONFIG = {
"num_train_timesteps": 40,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_IMAGENET_64_SCHEDULER_CONFIG = {
"num_train_timesteps": 201,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_LSUN_256_SCHEDULER_CONFIG = {
"num_train_timesteps": 151,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")
def convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=False):
new_checkpoint[f"{new_prefix}.norm1.weight"] = checkpoint[f"{old_prefix}.in_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm1.bias"] = checkpoint[f"{old_prefix}.in_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv1.weight"] = checkpoint[f"{old_prefix}.in_layers.2.weight"]
new_checkpoint[f"{new_prefix}.conv1.bias"] = checkpoint[f"{old_prefix}.in_layers.2.bias"]
new_checkpoint[f"{new_prefix}.time_emb_proj.weight"] = checkpoint[f"{old_prefix}.emb_layers.1.weight"]
new_checkpoint[f"{new_prefix}.time_emb_proj.bias"] = checkpoint[f"{old_prefix}.emb_layers.1.bias"]
new_checkpoint[f"{new_prefix}.norm2.weight"] = checkpoint[f"{old_prefix}.out_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm2.bias"] = checkpoint[f"{old_prefix}.out_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv2.weight"] = checkpoint[f"{old_prefix}.out_layers.3.weight"]
new_checkpoint[f"{new_prefix}.conv2.bias"] = checkpoint[f"{old_prefix}.out_layers.3.bias"]
if has_skip:
new_checkpoint[f"{new_prefix}.conv_shortcut.weight"] = checkpoint[f"{old_prefix}.skip_connection.weight"]
new_checkpoint[f"{new_prefix}.conv_shortcut.bias"] = checkpoint[f"{old_prefix}.skip_connection.bias"]
return new_checkpoint
def convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_dim=None):
weight_q, weight_k, weight_v = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3, dim=0)
bias_q, bias_k, bias_v = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3, dim=0)
new_checkpoint[f"{new_prefix}.group_norm.weight"] = checkpoint[f"{old_prefix}.norm.weight"]
new_checkpoint[f"{new_prefix}.group_norm.bias"] = checkpoint[f"{old_prefix}.norm.bias"]
new_checkpoint[f"{new_prefix}.to_q.weight"] = weight_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_q.bias"] = bias_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.weight"] = weight_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.bias"] = bias_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.weight"] = weight_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.bias"] = bias_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_out.0.weight"] = (
checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1).squeeze(-1)
)
new_checkpoint[f"{new_prefix}.to_out.0.bias"] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1).squeeze(-1)
return new_checkpoint
def con_pt_to_diffuser(checkpoint_path: str, unet_config):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"]
if unet_config["num_class_embeds"] is not None:
new_checkpoint["class_embedding.weight"] = checkpoint["label_emb.weight"]
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"]
down_block_types = unet_config["down_block_types"]
layers_per_block = unet_config["layers_per_block"]
attention_head_dim = unet_config["attention_head_dim"]
channels_list = unet_config["block_out_channels"]
current_layer = 1
prev_channels = channels_list[0]
for i, layer_type in enumerate(down_block_types):
current_channels = channels_list[i]
downsample_block_has_skip = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
new_prefix = f"down_blocks.{i}.attentions.{j}"
old_prefix = f"input_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(down_block_types) - 1:
new_prefix = f"down_blocks.{i}.downsamplers.0"
old_prefix = f"input_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer += 1
prev_channels = current_channels
# hardcoded the mid-block for now
new_prefix = "mid_block.resnets.0"
old_prefix = "middle_block.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_prefix = "mid_block.attentions.0"
old_prefix = "middle_block.1"
new_checkpoint = convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim)
new_prefix = "mid_block.resnets.1"
old_prefix = "middle_block.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer = 0
up_block_types = unet_config["up_block_types"]
for i, layer_type in enumerate(up_block_types):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.1"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
new_prefix = f"up_blocks.{i}.attentions.{j}"
old_prefix = f"output_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"]
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"]
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
args = parser.parse_args()
args.class_cond = str2bool(args.class_cond)
ckpt_name = os.path.basename(args.unet_path)
print(f"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
unet_config = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
unet_config = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
unet_config = TEST_UNET_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
unet_config["num_class_embeds"] = None
converted_unet_ckpt = con_pt_to_diffuser(args.unet_path, unet_config)
image_unet = UNet2DModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
scheduler_config = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
scheduler_config = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
scheduler_config = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
cm_scheduler = CMStochasticIterativeScheduler(**scheduler_config)
consistency_model = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
|