File size: 4,776 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import unittest


git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))

import check_dummies  # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init  # noqa: E402


# Align TRANSFORMERS_PATH in check_dummies with the current path
check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers")


class CheckDummiesTester(unittest.TestCase):
    def test_find_backend(self):
        simple_backend = find_backend("    if not is_torch_available():")
        self.assertEqual(simple_backend, "torch")

        # backend_with_underscore = find_backend("    if not is_tensorflow_text_available():")
        # self.assertEqual(backend_with_underscore, "tensorflow_text")

        double_backend = find_backend("    if not (is_torch_available() and is_transformers_available()):")
        self.assertEqual(double_backend, "torch_and_transformers")

        # double_backend_with_underscore = find_backend(
        #    "    if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
        # )
        # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")

        triple_backend = find_backend(
            "    if not (is_torch_available() and is_transformers_available() and is_onnx_available()):"
        )
        self.assertEqual(triple_backend, "torch_and_transformers_and_onnx")

    def test_read_init(self):
        objects = read_init()
        # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
        self.assertIn("torch", objects)
        self.assertIn("torch_and_transformers", objects)
        self.assertIn("flax_and_transformers", objects)
        self.assertIn("torch_and_transformers_and_onnx", objects)

        # Likewise, we can't assert on the exact content of a key
        self.assertIn("UNet2DModel", objects["torch"])
        self.assertIn("FlaxUNet2DConditionModel", objects["flax"])
        self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"])
        self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"])
        self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"])
        self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"])

    def test_create_dummy_object(self):
        dummy_constant = create_dummy_object("CONSTANT", "'torch'")
        self.assertEqual(dummy_constant, "\nCONSTANT = None\n")

        dummy_function = create_dummy_object("function", "'torch'")
        self.assertEqual(
            dummy_function, "\ndef function(*args, **kwargs):\n    requires_backends(function, 'torch')\n"
        )

        expected_dummy_class = """
class FakeClass(metaclass=DummyObject):
    _backends = 'torch'

    def __init__(self, *args, **kwargs):
        requires_backends(self, 'torch')

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, 'torch')

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, 'torch')
"""
        dummy_class = create_dummy_object("FakeClass", "'torch'")
        self.assertEqual(dummy_class, expected_dummy_class)

    def test_create_dummy_files(self):
        expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends


CONSTANT = None


def function(*args, **kwargs):
    requires_backends(function, ["torch"])


class FakeClass(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
"""
        dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]})
        self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file)