File size: 6,948 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch

from diffusers import CMStochasticIterativeScheduler

from .test_schedulers import SchedulerCommonTest


class CMStochasticIterativeSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (CMStochasticIterativeScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 201,
            "sigma_min": 0.002,
            "sigma_max": 80.0,
        }

        config.update(**kwargs)
        return config

    # Override test_step_shape to add CMStochasticIterativeScheduler-specific logic regarding timesteps
    # Problem is that we don't know two timesteps that will always be in the timestep schedule from only the scheduler
    # config; scaled sigma_max is always in the timestep schedule, but sigma_min is in the sigma schedule while scaled
    # sigma_min is not in the timestep schedule
    def test_step_shape(self):
        num_inference_steps = 10

        scheduler_config = self.get_scheduler_config()
        scheduler = self.scheduler_classes[0](**scheduler_config)

        scheduler.set_timesteps(num_inference_steps)

        timestep_0 = scheduler.timesteps[0]
        timestep_1 = scheduler.timesteps[1]

        sample = self.dummy_sample
        residual = 0.1 * sample

        output_0 = scheduler.step(residual, timestep_0, sample).prev_sample
        output_1 = scheduler.step(residual, timestep_1, sample).prev_sample

        self.assertEqual(output_0.shape, sample.shape)
        self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_clip_denoised(self):
        for clip_denoised in [True, False]:
            self.check_over_configs(clip_denoised=clip_denoised)

    def test_full_loop_no_noise_onestep(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 1
        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma

        for i, t in enumerate(timesteps):
            # 1. scale model input
            scaled_sample = scheduler.scale_model_input(sample, t)

            # 2. predict noise residual
            residual = model(scaled_sample, t)

            # 3. predict previous sample x_t-1
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 192.7614) < 1e-2
        assert abs(result_mean.item() - 0.2510) < 1e-3

    def test_full_loop_no_noise_multistep(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [106, 0]
        scheduler.set_timesteps(timesteps=timesteps)
        timesteps = scheduler.timesteps

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma

        for t in timesteps:
            # 1. scale model input
            scaled_sample = scheduler.scale_model_input(sample, t)

            # 2. predict noise residual
            residual = model(scaled_sample, t)

            # 3. predict previous sample x_t-1
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 347.6357) < 1e-2
        assert abs(result_mean.item() - 0.4527) < 1e-3

    def test_full_loop_with_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        t_start = 8

        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma

        noise = self.dummy_noise_deter
        timesteps = scheduler.timesteps[t_start * scheduler.order :]

        sample = scheduler.add_noise(sample, noise, timesteps[:1])

        for t in timesteps:
            # 1. scale model input
            scaled_sample = scheduler.scale_model_input(sample, t)

            # 2. predict noise residual
            residual = model(scaled_sample, t)

            # 3. predict previous sample x_t-1
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 763.9186) < 1e-2, f" expected result sum 763.9186, but get {result_sum}"
        assert abs(result_mean.item() - 0.9947) < 1e-3, f" expected result mean 0.9947, but get {result_mean}"

    def test_custom_timesteps_increasing_order(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [39, 30, 12, 15, 0]

        with self.assertRaises(ValueError, msg="`timesteps` must be in descending order."):
            scheduler.set_timesteps(timesteps=timesteps)

    def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [39, 30, 12, 1, 0]
        num_inference_steps = len(timesteps)

        with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `timesteps`."):
            scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)

    def test_custom_timesteps_too_large(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [scheduler.config.num_train_timesteps]

        with self.assertRaises(
            ValueError,
            msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
        ):
            scheduler.set_timesteps(timesteps=timesteps)