Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,630 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
from diffusers import KDPM2AncestralDiscreteScheduler
from diffusers.utils.testing_utils import torch_device
from .test_schedulers import SchedulerCommonTest
class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
scheduler_classes = (KDPM2AncestralDiscreteScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=schedule)
def test_full_loop_no_noise(self):
if torch_device == "mps":
return
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 13849.3877) < 1e-2
assert abs(result_mean.item() - 18.0331) < 5e-3
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_full_loop_with_v_prediction(self):
if torch_device == "mps":
return
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
sample = sample.to(torch_device)
generator = torch.manual_seed(0)
for i, t in enumerate(scheduler.timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 328.9970) < 1e-2
assert abs(result_mean.item() - 0.4284) < 1e-3
def test_full_loop_device(self):
if torch_device == "mps":
return
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 13849.3818) < 1e-1
assert abs(result_mean.item() - 18.0331) < 1e-3
def test_full_loop_with_noise(self):
if torch_device == "mps":
return
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(self.num_inference_steps)
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
# add noise
t_start = self.num_inference_steps - 2
noise = self.dummy_noise_deter
noise = noise.to(sample.device)
timesteps = scheduler.timesteps[t_start * scheduler.order :]
sample = scheduler.add_noise(sample, noise, timesteps[:1])
for i, t in enumerate(timesteps):
sample = scheduler.scale_model_input(sample, t)
model_output = model(sample, t)
output = scheduler.step(model_output, t, sample, generator=generator)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 93087.0312) < 1e-2, f" expected result sum 93087.0312, but get {result_sum}"
assert abs(result_mean.item() - 121.2071) < 5e-3, f" expected result mean 121.2071, but get {result_mean}"
|