Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Note: | |
# This pipeline relies on a "hack" discovered by the community that allows | |
# the generation of videos given an input image with AnimateDiff. It works | |
# by creating a copy of the image `num_frames` times and progressively adding | |
# more noise to the image based on the strength and latent interpolation method. | |
import inspect | |
from types import FunctionType | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.models.unet_motion_model import MotionAdapter | |
from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler | |
>>> from diffusers.utils import export_to_gif, load_image | |
>>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | |
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | |
>>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda") | |
>>> pipe.scheduler = pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1) | |
>>> image = load_image("snail.png") | |
>>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp") | |
>>> frames = output.frames[0] | |
>>> export_to_gif(frames, "animation.gif") | |
``` | |
""" | |
def lerp( | |
v0: torch.Tensor, | |
v1: torch.Tensor, | |
t: Union[float, torch.Tensor], | |
) -> torch.Tensor: | |
r""" | |
Linear Interpolation between two tensors. | |
Args: | |
v0 (`torch.Tensor`): First tensor. | |
v1 (`torch.Tensor`): Second tensor. | |
t: (`float` or `torch.Tensor`): Interpolation factor. | |
""" | |
t_is_float = False | |
input_device = v0.device | |
v0 = v0.cpu().numpy() | |
v1 = v1.cpu().numpy() | |
if isinstance(t, torch.Tensor): | |
t = t.cpu().numpy() | |
else: | |
t_is_float = True | |
t = np.array([t], dtype=v0.dtype) | |
t = t[..., None] | |
v0 = v0[None, ...] | |
v1 = v1[None, ...] | |
v2 = (1 - t) * v0 + t * v1 | |
if t_is_float and v0.ndim > 1: | |
assert v2.shape[0] == 1 | |
v2 = np.squeeze(v2, axis=0) | |
v2 = torch.from_numpy(v2).to(input_device) | |
return v2 | |
def slerp( | |
v0: torch.Tensor, | |
v1: torch.Tensor, | |
t: Union[float, torch.Tensor], | |
DOT_THRESHOLD: float = 0.9995, | |
) -> torch.Tensor: | |
r""" | |
Spherical Linear Interpolation between two tensors. | |
Args: | |
v0 (`torch.Tensor`): First tensor. | |
v1 (`torch.Tensor`): Second tensor. | |
t: (`float` or `torch.Tensor`): Interpolation factor. | |
DOT_THRESHOLD (`float`): | |
Dot product threshold exceeding which linear interpolation will be used | |
because input tensors are close to parallel. | |
""" | |
t_is_float = False | |
input_device = v0.device | |
v0 = v0.cpu().numpy() | |
v1 = v1.cpu().numpy() | |
if isinstance(t, torch.Tensor): | |
t = t.cpu().numpy() | |
else: | |
t_is_float = True | |
t = np.array([t], dtype=v0.dtype) | |
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | |
if np.abs(dot) > DOT_THRESHOLD: | |
# v0 and v1 are close to parallel, so use linear interpolation instead | |
v2 = lerp(v0, v1, t) | |
else: | |
theta_0 = np.arccos(dot) | |
sin_theta_0 = np.sin(theta_0) | |
theta_t = theta_0 * t | |
sin_theta_t = np.sin(theta_t) | |
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | |
s1 = sin_theta_t / sin_theta_0 | |
s0 = s0[..., None] | |
s1 = s1[..., None] | |
v0 = v0[None, ...] | |
v1 = v1[None, ...] | |
v2 = s0 * v0 + s1 * v1 | |
if t_is_float and v0.ndim > 1: | |
assert v2.shape[0] == 1 | |
v2 = np.squeeze(v2, axis=0) | |
v2 = torch.from_numpy(v2).to(input_device) | |
return v2 | |
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
def tensor2vid(video: torch.Tensor, processor, output_type="np"): | |
batch_size, channels, num_frames, height, width = video.shape | |
outputs = [] | |
for batch_idx in range(batch_size): | |
batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
batch_output = processor.postprocess(batch_vid, output_type) | |
outputs.append(batch_output) | |
if output_type == "np": | |
outputs = np.stack(outputs) | |
elif output_type == "pt": | |
outputs = torch.stack(outputs) | |
elif not output_type == "pil": | |
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | |
return outputs | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
`timesteps` must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class AnimateDiffImgToVideoPipeline( | |
DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin | |
): | |
r""" | |
Pipeline for image-to-video generation. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer (`CLIPTokenizer`): | |
A [`~transformers.CLIPTokenizer`] to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. | |
motion_adapter ([`MotionAdapter`]): | |
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
_optional_components = ["feature_extractor", "image_encoder"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
motion_adapter: MotionAdapter, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
feature_extractor: CLIPImageProcessor = None, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
): | |
super().__init__() | |
unet = UNetMotionModel.from_unet2d(unet, motion_adapter) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
motion_adapter=motion_adapter, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
def prepare_ip_adapter_image_embeds( | |
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
): | |
if ip_adapter_image_embeds is None: | |
if not isinstance(ip_adapter_image, list): | |
ip_adapter_image = [ip_adapter_image] | |
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
raise ValueError( | |
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
) | |
image_embeds = [] | |
for single_ip_adapter_image, image_proj_layer in zip( | |
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
): | |
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
single_image_embeds, single_negative_image_embeds = self.encode_image( | |
single_ip_adapter_image, device, 1, output_hidden_state | |
) | |
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
single_negative_image_embeds = torch.stack( | |
[single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
) | |
if self.do_classifier_free_guidance: | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
single_image_embeds = single_image_embeds.to(device) | |
image_embeds.append(single_image_embeds) | |
else: | |
image_embeds = ip_adapter_image_embeds | |
return image_embeds | |
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents | |
def decode_latents(self, latents): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
batch_size, channels, num_frames, height, width = latents.shape | |
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | |
image = self.vae.decode(latents).sample | |
video = ( | |
image[None, :] | |
.reshape( | |
( | |
batch_size, | |
num_frames, | |
-1, | |
) | |
+ image.shape[2:] | |
) | |
.permute(0, 2, 1, 3, 4) | |
) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
video = video.float() | |
return video | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
latent_interpolation_method=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if latent_interpolation_method is not None: | |
if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance( | |
latent_interpolation_method, FunctionType | |
): | |
raise ValueError( | |
"`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]" | |
) | |
def prepare_latents( | |
self, | |
image, | |
strength, | |
batch_size, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
latent_interpolation_method="slerp", | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if latents is None: | |
image = image.to(device=device, dtype=dtype) | |
if image.shape[1] == 4: | |
latents = image | |
else: | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
image = image.float() | |
self.vae.to(dtype=torch.float32) | |
if isinstance(generator, list): | |
if len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
init_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype) | |
init_latents = init_latents.to(dtype) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = latents * self.scheduler.init_noise_sigma | |
if latent_interpolation_method == "lerp": | |
def latent_cls(v0, v1, index): | |
return lerp(v0, v1, index / num_frames * (1 - strength)) | |
elif latent_interpolation_method == "slerp": | |
def latent_cls(v0, v1, index): | |
return slerp(v0, v1, index / num_frames * (1 - strength)) | |
else: | |
latent_cls = latent_interpolation_method | |
for i in range(num_frames): | |
latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i) | |
else: | |
if shape != latents.shape: | |
# [B, C, F, H, W] | |
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") | |
latents = latents.to(device, dtype=dtype) | |
return latents | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_frames: int = 16, | |
num_inference_steps: int = 50, | |
timesteps: Optional[List[int]] = None, | |
guidance_scale: float = 7.5, | |
strength: float = 0.8, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[PipelineImageInput] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp", | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`PipelineImageInput`): | |
The input image to condition the generation on. | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated video. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated video. | |
num_frames (`int`, *optional*, defaults to 16): | |
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
amounts to 2 seconds of video. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
expense of slower inference. | |
strength (`float`, *optional*, defaults to 0.8): | |
Higher strength leads to more differences between original image and generated video. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
`(batch_size, num_channel, num_frames, height, width)`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): | |
Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | |
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | |
if `do_classifier_free_guidance` is set to `True`. | |
If not provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or | |
`np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead | |
of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*): | |
Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index | |
as input and returns an initial latent for sampling. | |
Examples: | |
Returns: | |
[`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt=prompt, | |
height=height, | |
width=width, | |
callback_steps=callback_steps, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
latent_interpolation_method=latent_interpolation_method, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt | |
) | |
# 4. Preprocess image | |
image = self.image_processor.preprocess(image, height=height, width=width) | |
# 5. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
image=image, | |
strength=strength, | |
batch_size=batch_size * num_videos_per_prompt, | |
num_channels_latents=num_channels_latents, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=latents, | |
latent_interpolation_method=latent_interpolation_method, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
return AnimateDiffPipelineOutput(frames=latents) | |
# 10. Post-processing | |
if output_type == "latent": | |
video = latents | |
else: | |
video_tensor = self.decode_latents(latents) | |
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | |
# 11. Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return AnimateDiffPipelineOutput(frames=video) | |