Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AnimateDiffPipeline, | |
AutoencoderKL, | |
DDIMScheduler, | |
MotionAdapter, | |
UNet2DConditionModel, | |
UNetMotionModel, | |
) | |
from diffusers.utils import is_xformers_available, logging | |
from diffusers.utils.testing_utils import numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineFromPipeTesterMixin, | |
PipelineTesterMixin, | |
SDFunctionTesterMixin, | |
) | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
class AnimateDiffPipelineFastTests( | |
IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase | |
): | |
pipeline_class = AnimateDiffPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
norm_num_groups=2, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
clip_sample=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
motion_adapter = MotionAdapter( | |
block_out_channels=(32, 64), | |
motion_layers_per_block=2, | |
motion_norm_num_groups=2, | |
motion_num_attention_heads=4, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"motion_adapter": motion_adapter, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 7.5, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_motion_unet_loading(self): | |
components = self.get_dummy_components() | |
pipe = AnimateDiffPipeline(**components) | |
assert isinstance(pipe.unet, UNetMotionModel) | |
def test_attention_slicing_forward_pass(self): | |
pass | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array( | |
[ | |
0.5541, | |
0.5802, | |
0.5074, | |
0.4583, | |
0.4729, | |
0.5374, | |
0.4051, | |
0.4495, | |
0.4480, | |
0.5292, | |
0.6322, | |
0.6265, | |
0.5455, | |
0.4771, | |
0.5795, | |
0.5845, | |
0.4172, | |
0.6066, | |
0.6535, | |
0.4113, | |
0.6833, | |
0.5736, | |
0.3589, | |
0.5730, | |
0.4205, | |
0.3786, | |
0.5323, | |
] | |
) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_dict_tuple_outputs_equivalent(self): | |
expected_slice = None | |
if torch_device == "cpu": | |
expected_slice = np.array([0.4051, 0.4495, 0.4480, 0.5845, 0.4172, 0.6066, 0.4205, 0.3786, 0.5323]) | |
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) | |
def test_inference_batch_single_identical( | |
self, | |
batch_size=2, | |
expected_max_diff=1e-4, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for components in pipe.components.values(): | |
if hasattr(components, "set_default_attn_processor"): | |
components.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
# Reset generator in case it is has been used in self.get_dummy_inputs | |
inputs["generator"] = self.get_generator(0) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batched_inputs.update(inputs) | |
for name in self.batch_params: | |
if name not in inputs: | |
continue | |
value = inputs[name] | |
if name == "prompt": | |
len_prompt = len(value) | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
batched_inputs[name][-1] = 100 * "very long" | |
else: | |
batched_inputs[name] = batch_size * [value] | |
if "generator" in inputs: | |
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
if "batch_size" in inputs: | |
batched_inputs["batch_size"] = batch_size | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
output = pipe(**inputs) | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size | |
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
assert max_diff < expected_max_diff | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(dtype=torch.float16) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_prompt_embeds(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs.pop("prompt") | |
inputs["prompt_embeds"] = torch.randn((1, 4, 32), device=torch_device) | |
pipe(**inputs) | |
def test_free_init(self): | |
components = self.get_dummy_components() | |
pipe: AnimateDiffPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs_normal = self.get_dummy_inputs(torch_device) | |
frames_normal = pipe(**inputs_normal).frames[0] | |
pipe.enable_free_init( | |
num_iters=2, | |
use_fast_sampling=True, | |
method="butterworth", | |
order=4, | |
spatial_stop_frequency=0.25, | |
temporal_stop_frequency=0.25, | |
) | |
inputs_enable_free_init = self.get_dummy_inputs(torch_device) | |
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0] | |
pipe.disable_free_init() | |
inputs_disable_free_init = self.get_dummy_inputs(torch_device) | |
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0] | |
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() | |
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max() | |
self.assertGreater( | |
sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results" | |
) | |
self.assertLess( | |
max_diff_disabled, | |
1e-4, | |
"Disabling of FreeInit should lead to results similar to the default pipeline results", | |
) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
output_without_offload = ( | |
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
output_with_offload = ( | |
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
) | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | |
def test_vae_slicing(self): | |
return super().test_vae_slicing(image_count=2) | |
class AnimateDiffPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_animatediff(self): | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | |
pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter) | |
pipe = pipe.to(torch_device) | |
pipe.scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
steps_offset=1, | |
clip_sample=False, | |
) | |
pipe.enable_vae_slicing() | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
prompt = "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain" | |
negative_prompt = "bad quality, worse quality" | |
generator = torch.Generator("cpu").manual_seed(0) | |
output = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
num_frames=16, | |
generator=generator, | |
guidance_scale=7.5, | |
num_inference_steps=3, | |
output_type="np", | |
) | |
image = output.frames[0] | |
assert image.shape == (16, 512, 512, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array( | |
[ | |
0.11357737, | |
0.11285847, | |
0.11180121, | |
0.11084166, | |
0.11414117, | |
0.09785956, | |
0.10742754, | |
0.10510018, | |
0.08045256, | |
] | |
) | |
assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 | |