Spaces:
Running
on
Zero
Running
on
Zero
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AnimateDiffSDXLPipeline, | |
AutoencoderKL, | |
DDIMScheduler, | |
MotionAdapter, | |
UNet2DConditionModel, | |
UNetMotionModel, | |
) | |
from diffusers.utils import is_xformers_available, logging | |
from diffusers.utils.testing_utils import torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineTesterMixin, | |
SDFunctionTesterMixin, | |
SDXLOptionalComponentsTesterMixin, | |
) | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
class AnimateDiffPipelineSDXLFastTests( | |
IPAdapterTesterMixin, | |
SDFunctionTesterMixin, | |
PipelineTesterMixin, | |
SDXLOptionalComponentsTesterMixin, | |
unittest.TestCase, | |
): | |
pipeline_class = AnimateDiffSDXLPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64, 128), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4, 8), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2, 4), | |
projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
cross_attention_dim=64, | |
norm_num_groups=1, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
clip_sample=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
motion_adapter = MotionAdapter( | |
block_out_channels=(32, 64, 128), | |
motion_layers_per_block=2, | |
motion_norm_num_groups=2, | |
motion_num_attention_heads=4, | |
use_motion_mid_block=False, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"motion_adapter": motion_adapter, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_motion_unet_loading(self): | |
components = self.get_dummy_components() | |
pipe = AnimateDiffSDXLPipeline(**components) | |
assert isinstance(pipe.unet, UNetMotionModel) | |
def test_attention_slicing_forward_pass(self): | |
pass | |
def test_inference_batch_single_identical( | |
self, | |
batch_size=2, | |
expected_max_diff=1e-4, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for components in pipe.components.values(): | |
if hasattr(components, "set_default_attn_processor"): | |
components.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
# Reset generator in case it is has been used in self.get_dummy_inputs | |
inputs["generator"] = self.get_generator(0) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batched_inputs.update(inputs) | |
for name in self.batch_params: | |
if name not in inputs: | |
continue | |
value = inputs[name] | |
if name == "prompt": | |
len_prompt = len(value) | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
batched_inputs[name][-1] = 100 * "very long" | |
else: | |
batched_inputs[name] = batch_size * [value] | |
if "generator" in inputs: | |
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
if "batch_size" in inputs: | |
batched_inputs["batch_size"] = batch_size | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
output = pipe(**inputs) | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size | |
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
assert max_diff < expected_max_diff | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(dtype=torch.float16) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_prompt_embeds(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(prompt) | |
pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
) | |
def test_save_load_optional_components(self): | |
self._test_save_load_optional_components() | |
def test_xformers_attention_forwardGenerator_pass(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
output_without_offload = ( | |
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
output_with_offload = ( | |
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
) | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | |