Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler | |
from diffusers.utils import is_xformers_available | |
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device | |
from ..pipeline_params import ( | |
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, | |
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = DiTPipeline | |
params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params - { | |
"latents", | |
"num_images_per_prompt", | |
"callback", | |
"callback_steps", | |
} | |
batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = DiTTransformer2DModel( | |
sample_size=16, | |
num_layers=2, | |
patch_size=4, | |
attention_head_dim=8, | |
num_attention_heads=2, | |
in_channels=4, | |
out_channels=8, | |
attention_bias=True, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_type="ada_norm_zero", | |
norm_elementwise_affine=False, | |
) | |
vae = AutoencoderKL() | |
scheduler = DDIMScheduler() | |
components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"class_labels": [1], | |
"generator": generator, | |
"num_inference_steps": 2, | |
"output_type": "np", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 16, 16, 3)) | |
expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=1e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) | |
class DiTPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_dit_256(self): | |
generator = torch.manual_seed(0) | |
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") | |
pipe.to("cuda") | |
words = ["vase", "umbrella", "white shark", "white wolf"] | |
ids = pipe.get_label_ids(words) | |
images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images | |
for word, image in zip(words, images): | |
expected_image = load_numpy( | |
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" | |
) | |
assert np.abs((expected_image - image).max()) < 1e-2 | |
def test_dit_512(self): | |
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
words = ["vase", "umbrella"] | |
ids = pipe.get_label_ids(words) | |
generator = torch.manual_seed(0) | |
images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images | |
for word, image in zip(words, images): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
f"/dit/{word}_512.npy" | |
) | |
assert np.abs((expected_image - image).max()) < 1e-1 | |