Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, BertModel, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
HunyuanDiT2DModel, | |
HunyuanDiTPipeline, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = HunyuanDiTPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = HunyuanDiT2DModel( | |
sample_size=16, | |
num_layers=2, | |
patch_size=2, | |
attention_head_dim=8, | |
num_attention_heads=3, | |
in_channels=4, | |
cross_attention_dim=32, | |
cross_attention_dim_t5=32, | |
pooled_projection_dim=16, | |
hidden_size=24, | |
activation_fn="gelu-approximate", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
scheduler = DDPMScheduler() | |
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer.eval(), | |
"vae": vae.eval(), | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"use_resolution_binning": False, | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 16, 16, 3)) | |
expected_slice = np.array( | |
[0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364] | |
) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_sequential_cpu_offload_forward_pass(self): | |
# TODO(YiYi) need to fix later | |
pass | |
def test_sequential_offload_forward_pass_twice(self): | |
# TODO(YiYi) need to fix later | |
pass | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical( | |
expected_max_diff=1e-3, | |
) | |
def test_save_load_optional_components(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs["prompt"] | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0) | |
( | |
prompt_embeds_2, | |
negative_prompt_embeds_2, | |
prompt_attention_mask_2, | |
negative_prompt_attention_mask_2, | |
) = pipe.encode_prompt( | |
prompt, | |
device=torch_device, | |
dtype=torch.float32, | |
text_encoder_index=1, | |
) | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"prompt_embeds_2": prompt_embeds_2, | |
"prompt_attention_mask_2": prompt_attention_mask_2, | |
"negative_prompt_embeds_2": negative_prompt_embeds_2, | |
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"prompt_embeds_2": prompt_embeds_2, | |
"prompt_attention_mask_2": prompt_attention_mask_2, | |
"negative_prompt_embeds_2": negative_prompt_embeds_2, | |
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_feed_forward_chunking(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_no_chunking = image[0, -3:, -3:, -1] | |
pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_chunking = image[0, -3:, -3:, -1] | |
max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_fused_qkv_projections(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["return_dict"] = False | |
image = pipe(**inputs)[0] | |
original_image_slice = image[0, -3:, -3:, -1] | |
pipe.transformer.fuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
inputs["return_dict"] = False | |
image_fused = pipe(**inputs)[0] | |
image_slice_fused = image_fused[0, -3:, -3:, -1] | |
pipe.transformer.unfuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
inputs["return_dict"] = False | |
image_disabled = pipe(**inputs)[0] | |
image_slice_disabled = image_disabled[0, -3:, -3:, -1] | |
assert np.allclose( | |
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 | |
), "Fusion of QKV projections shouldn't affect the outputs." | |
assert np.allclose( | |
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
assert np.allclose( | |
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Original outputs should match when fused QKV projections are disabled." | |
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase): | |
prompt = "一个宇航员在骑马" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_hunyuan_dit_1024(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = HunyuanDiTPipeline.from_pretrained( | |
"XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
image = pipe( | |
prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np" | |
).images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array( | |
[0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125] | |
) | |
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) | |
assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}" | |