Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel | |
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
load_numpy, | |
nightly, | |
require_torch_gpu, | |
skip_mps, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
enable_full_determinism() | |
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = UnCLIPPipeline | |
params = TEXT_TO_IMAGE_PARAMS - { | |
"negative_prompt", | |
"height", | |
"width", | |
"negative_prompt_embeds", | |
"guidance_scale", | |
"prompt_embeds", | |
"cross_attention_kwargs", | |
} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
required_optional_params = [ | |
"generator", | |
"return_dict", | |
"prior_num_inference_steps", | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
test_xformers_attention = False | |
def text_embedder_hidden_size(self): | |
return 32 | |
def time_input_dim(self): | |
return 32 | |
def block_out_channels_0(self): | |
return self.time_input_dim | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def cross_attention_dim(self): | |
return 100 | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=self.text_embedder_hidden_size, | |
projection_dim=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModelWithProjection(config) | |
def dummy_prior(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"num_attention_heads": 2, | |
"attention_head_dim": 12, | |
"embedding_dim": self.text_embedder_hidden_size, | |
"num_layers": 1, | |
} | |
model = PriorTransformer(**model_kwargs) | |
return model | |
def dummy_text_proj(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"clip_embeddings_dim": self.text_embedder_hidden_size, | |
"time_embed_dim": self.time_embed_dim, | |
"cross_attention_dim": self.cross_attention_dim, | |
} | |
model = UnCLIPTextProjModel(**model_kwargs) | |
return model | |
def dummy_decoder(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"sample_size": 32, | |
# RGB in channels | |
"in_channels": 3, | |
# Out channels is double in channels because predicts mean and variance | |
"out_channels": 6, | |
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), | |
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), | |
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
"layers_per_block": 1, | |
"cross_attention_dim": self.cross_attention_dim, | |
"attention_head_dim": 4, | |
"resnet_time_scale_shift": "scale_shift", | |
"class_embed_type": "identity", | |
} | |
model = UNet2DConditionModel(**model_kwargs) | |
return model | |
def dummy_super_res_kwargs(self): | |
return { | |
"sample_size": 64, | |
"layers_per_block": 1, | |
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), | |
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), | |
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
"in_channels": 6, | |
"out_channels": 3, | |
} | |
def dummy_super_res_first(self): | |
torch.manual_seed(0) | |
model = UNet2DModel(**self.dummy_super_res_kwargs) | |
return model | |
def dummy_super_res_last(self): | |
# seeded differently to get different unet than `self.dummy_super_res_first` | |
torch.manual_seed(1) | |
model = UNet2DModel(**self.dummy_super_res_kwargs) | |
return model | |
def get_dummy_components(self): | |
prior = self.dummy_prior | |
decoder = self.dummy_decoder | |
text_proj = self.dummy_text_proj | |
text_encoder = self.dummy_text_encoder | |
tokenizer = self.dummy_tokenizer | |
super_res_first = self.dummy_super_res_first | |
super_res_last = self.dummy_super_res_last | |
prior_scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="sample", | |
num_train_timesteps=1000, | |
clip_sample_range=5.0, | |
) | |
decoder_scheduler = UnCLIPScheduler( | |
variance_type="learned_range", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
super_res_scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
) | |
components = { | |
"prior": prior, | |
"decoder": decoder, | |
"text_proj": text_proj, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"super_res_first": super_res_first, | |
"super_res_last": super_res_last, | |
"prior_scheduler": prior_scheduler, | |
"decoder_scheduler": decoder_scheduler, | |
"super_res_scheduler": super_res_scheduler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "horse", | |
"generator": generator, | |
"prior_num_inference_steps": 2, | |
"decoder_num_inference_steps": 2, | |
"super_res_num_inference_steps": 2, | |
"output_type": "np", | |
} | |
return inputs | |
def test_unclip(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array( | |
[ | |
0.9997, | |
0.9988, | |
0.0028, | |
0.9997, | |
0.9984, | |
0.9965, | |
0.0029, | |
0.9986, | |
0.0025, | |
] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_unclip_passed_text_embed(self): | |
device = torch.device("cpu") | |
class DummyScheduler: | |
init_noise_sigma = 1 | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
prior = components["prior"] | |
decoder = components["decoder"] | |
super_res_first = components["super_res_first"] | |
tokenizer = components["tokenizer"] | |
text_encoder = components["text_encoder"] | |
generator = torch.Generator(device=device).manual_seed(0) | |
dtype = prior.dtype | |
batch_size = 1 | |
shape = (batch_size, prior.config.embedding_dim) | |
prior_latents = pipe.prepare_latents( | |
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
) | |
shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size) | |
decoder_latents = pipe.prepare_latents( | |
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
) | |
shape = ( | |
batch_size, | |
super_res_first.config.in_channels // 2, | |
super_res_first.config.sample_size, | |
super_res_first.config.sample_size, | |
) | |
super_res_latents = pipe.prepare_latents( | |
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() | |
) | |
pipe.set_progress_bar_config(disable=None) | |
prompt = "this is a prompt example" | |
generator = torch.Generator(device=device).manual_seed(0) | |
output = pipe( | |
[prompt], | |
generator=generator, | |
prior_num_inference_steps=2, | |
decoder_num_inference_steps=2, | |
super_res_num_inference_steps=2, | |
prior_latents=prior_latents, | |
decoder_latents=decoder_latents, | |
super_res_latents=super_res_latents, | |
output_type="np", | |
) | |
image = output.images | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
return_tensors="pt", | |
) | |
text_model_output = text_encoder(text_inputs.input_ids) | |
text_attention_mask = text_inputs.attention_mask | |
generator = torch.Generator(device=device).manual_seed(0) | |
image_from_text = pipe( | |
generator=generator, | |
prior_num_inference_steps=2, | |
decoder_num_inference_steps=2, | |
super_res_num_inference_steps=2, | |
prior_latents=prior_latents, | |
decoder_latents=decoder_latents, | |
super_res_latents=super_res_latents, | |
text_model_output=text_model_output, | |
text_attention_mask=text_attention_mask, | |
output_type="np", | |
)[0] | |
# make sure passing text embeddings manually is identical | |
assert np.abs(image - image_from_text).max() < 1e-4 | |
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass | |
# because UnCLIP GPU undeterminism requires a looser check. | |
def test_attention_slicing_forward_pass(self): | |
test_max_difference = torch_device == "cpu" | |
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01) | |
# Overriding PipelineTesterMixin::test_inference_batch_single_identical | |
# because UnCLIP undeterminism requires a looser check. | |
def test_inference_batch_single_identical(self): | |
additional_params_copy_to_batched_inputs = [ | |
"prior_num_inference_steps", | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
self._test_inference_batch_single_identical( | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3 | |
) | |
def test_inference_batch_consistent(self): | |
additional_params_copy_to_batched_inputs = [ | |
"prior_num_inference_steps", | |
"decoder_num_inference_steps", | |
"super_res_num_inference_steps", | |
] | |
if torch_device == "mps": | |
# TODO: MPS errors with larger batch sizes | |
batch_sizes = [2, 3] | |
self._test_inference_batch_consistent( | |
batch_sizes=batch_sizes, | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, | |
) | |
else: | |
self._test_inference_batch_consistent( | |
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs | |
) | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_local(self): | |
return super().test_save_load_local(expected_max_difference=5e-3) | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_float16_inference(self): | |
super().test_float16_inference(expected_max_diff=1.0) | |
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_unclip_karlo_cpu_fp32(self): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/unclip/karlo_v1_alpha_horse_cpu.npy" | |
) | |
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha") | |
pipeline.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
output = pipeline( | |
"horse", | |
num_images_per_prompt=1, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
assert np.abs(expected_image - image).max() < 1e-1 | |
class UnCLIPPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_unclip_karlo(self): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/unclip/karlo_v1_alpha_horse_fp16.npy" | |
) | |
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) | |
pipeline = pipeline.to(torch_device) | |
pipeline.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipeline( | |
"horse", | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
assert_mean_pixel_difference(image, expected_image) | |
def test_unclip_pipeline_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
pipe.enable_sequential_cpu_offload() | |
_ = pipe( | |
"horse", | |
num_images_per_prompt=1, | |
prior_num_inference_steps=2, | |
decoder_num_inference_steps=2, | |
super_res_num_inference_steps=2, | |
output_type="np", | |
) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 7 GB is allocated | |
assert mem_bytes < 7 * 10**9 | |