Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numbers | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.models import AsymmetricAutoencoderKL, ImageProjection | |
from diffusers.models.attention_processor import Attention, AttnProcessor | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import ( | |
StableDiffusionInpaintPipeline, | |
retrieve_timesteps, | |
) | |
from diffusers.utils import deprecate | |
class RASGAttnProcessor: | |
def __init__(self, mask, token_idx, scale_factor): | |
self.attention_scores = None # Stores the last output of the similarity matrix here. Each layer will get its own RASGAttnProcessor assigned | |
self.mask = mask | |
self.token_idx = token_idx | |
self.scale_factor = scale_factor | |
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 if the image is 512x512 | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
scale: float = 1.0, | |
) -> torch.Tensor: | |
# Same as the default AttnProcessor up untill the part where similarity matrix gets saved | |
downscale_factor = self.mask_resoltuion // hidden_states.shape[1] | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
# Automatically recognize the resolution and save the attention similarity values | |
# We need to use the values before the softmax function, hence the rewritten get_attention_scores function. | |
if downscale_factor == self.scale_factor**2: | |
self.attention_scores = get_attention_scores(attn, query, key, attention_mask) | |
attention_probs = self.attention_scores.softmax(dim=-1) | |
attention_probs = attention_probs.to(query.dtype) | |
else: | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) # Original code | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class PAIntAAttnProcessor: | |
def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors): | |
self.transformer_block = transformer_block # Stores the parent transformer block. | |
self.mask = mask | |
self.scale_factors = scale_factors | |
self.do_classifier_free_guidance = do_classifier_free_guidance | |
self.token_idx = token_idx | |
self.shape = mask.shape[2:] | |
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 | |
self.default_processor = AttnProcessor() | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
scale: float = 1.0, | |
) -> torch.Tensor: | |
# Automatically recognize the resolution of the current attention layer and resize the masks accordingly | |
downscale_factor = self.mask_resoltuion // hidden_states.shape[1] | |
mask = None | |
for factor in self.scale_factors: | |
if downscale_factor == factor**2: | |
shape = (self.shape[0] // factor, self.shape[1] // factor) | |
mask = F.interpolate(self.mask, shape, mode="bicubic") # B, 1, H, W | |
break | |
if mask is None: | |
return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale) | |
# STARTS HERE | |
residual = hidden_states | |
# Save the input hidden_states for later use | |
input_hidden_states = hidden_states | |
# ================================================== # | |
# =============== SELF ATTENTION 1 ================= # | |
# ================================================== # | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
# self_attention_probs = attn.get_attention_scores(query, key, attention_mask) # We can't use post-softmax attention scores in this case | |
self_attention_scores = get_attention_scores( | |
attn, query, key, attention_mask | |
) # The custom function returns pre-softmax probabilities | |
self_attention_probs = self_attention_scores.softmax( | |
dim=-1 | |
) # Manually compute the probabilities here, the scores will be reused in the second part of PAIntA | |
self_attention_probs = self_attention_probs.to(query.dtype) | |
hidden_states = torch.bmm(self_attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
# x = x + self.attn1(self.norm1(x)) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: # So many residuals everywhere | |
hidden_states = hidden_states + residual | |
self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor | |
# ================================================== # | |
# ============ BasicTransformerBlock =============== # | |
# ================================================== # | |
# We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here | |
# The other option would've been modifying the BasicTransformerBlock and adding this functionality here. | |
# I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead. | |
# The SelfAttention block recieves the normalized latents from the BasicTransformerBlock, | |
# But the residual of the output is the non-normalized version. | |
# Therefore we unnormalize the input hidden state here | |
unnormalized_input_hidden_states = ( | |
input_hidden_states + self.transformer_block.norm1.bias | |
) * self.transformer_block.norm1.weight | |
# TODO: return if neccessary | |
# if self.use_ada_layer_norm_zero: | |
# attn_output = gate_msa.unsqueeze(1) * attn_output | |
# elif self.use_ada_layer_norm_single: | |
# attn_output = gate_msa * attn_output | |
transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states | |
if transformer_hidden_states.ndim == 4: | |
transformer_hidden_states = transformer_hidden_states.squeeze(1) | |
# TODO: return if neccessary | |
# 2.5 GLIGEN Control | |
# if gligen_kwargs is not None: | |
# transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"]) | |
# NOTE: we experimented with using GLIGEN and HDPainter together, the results were not that great | |
# 3. Cross-Attention | |
if self.transformer_block.use_ada_layer_norm: | |
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, timestep) | |
raise NotImplementedError() | |
elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm: | |
transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states) | |
elif self.transformer_block.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
transformer_norm_hidden_states = transformer_hidden_states | |
elif self.transformer_block.use_ada_layer_norm_continuous: | |
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
raise NotImplementedError() | |
else: | |
raise ValueError("Incorrect norm") | |
if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False: | |
transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states) | |
# ================================================== # | |
# ================= CROSS ATTENTION ================ # | |
# ================================================== # | |
# We do an initial pass of the CrossAttention up to obtaining the similarity matrix here. | |
# The similarity matrix is used to obtain scaling coefficients for the attention matrix of the self attention | |
# We reuse the previously computed self-attention matrix, and only repeat the steps after the softmax | |
cross_attention_input_hidden_states = ( | |
transformer_norm_hidden_states # Renaming the variable for the sake of readability | |
) | |
# TODO: check if classifier_free_guidance is being used before splitting here | |
if self.do_classifier_free_guidance: | |
# Our scaling coefficients depend only on the conditional part, so we split the inputs | |
( | |
_cross_attention_input_hidden_states_unconditional, | |
cross_attention_input_hidden_states_conditional, | |
) = cross_attention_input_hidden_states.chunk(2) | |
# Same split for the encoder_hidden_states i.e. the tokens | |
# Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining. | |
_encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk( | |
2 | |
) | |
else: | |
cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states | |
encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2) | |
# Rename the variables for the sake of readability | |
# The part below is the beginning of the __call__ function of the following CrossAttention layer | |
cross_attention_hidden_states = cross_attention_input_hidden_states_conditional | |
cross_attention_encoder_hidden_states = encoder_hidden_states_conditional | |
attn2 = self.transformer_block.attn2 | |
if attn2.spatial_norm is not None: | |
cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb) | |
input_ndim = cross_attention_hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = cross_attention_hidden_states.shape | |
cross_attention_hidden_states = cross_attention_hidden_states.view( | |
batch_size, channel, height * width | |
).transpose(1, 2) | |
( | |
batch_size, | |
sequence_length, | |
_, | |
) = cross_attention_hidden_states.shape # It is definitely a cross attention, so no need for an if block | |
# TODO: change the attention_mask here | |
attention_mask = attn2.prepare_attention_mask( | |
None, sequence_length, batch_size | |
) # I assume the attention mask is the same... | |
if attn2.group_norm is not None: | |
cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
query2 = attn2.to_q(cross_attention_hidden_states) | |
if attn2.norm_cross: | |
cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states( | |
cross_attention_encoder_hidden_states | |
) | |
key2 = attn2.to_k(cross_attention_encoder_hidden_states) | |
query2 = attn2.head_to_batch_dim(query2) | |
key2 = attn2.head_to_batch_dim(key2) | |
cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask) | |
# CrossAttention ends here, the remaining part is not used | |
# ================================================== # | |
# ================ SELF ATTENTION 2 ================ # | |
# ================================================== # | |
# DEJA VU! | |
mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype) | |
m = mask.to(self_attention_output_hidden_states.device) | |
# m = rearrange(m, 'b c h w -> b (h w) c').contiguous() | |
m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous() # B HW 1 | |
m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m) | |
# # Compute scaling coefficients for the similarity matrix | |
# # Select the cross attention values for the correct tokens only! | |
# cross_attention_probs = cross_attention_probs.mean(dim = 0) | |
# cross_attention_probs = cross_attention_probs[:, self.token_idx].sum(dim=1) | |
# cross_attention_probs = cross_attention_probs.reshape(shape) | |
# gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(self_attention_output_hidden_states.device) | |
# cross_attention_probs = gaussian_smoothing(cross_attention_probs.unsqueeze(0))[0] # optional smoothing | |
# cross_attention_probs = cross_attention_probs.reshape(-1) | |
# cross_attention_probs = ((cross_attention_probs - torch.median(cross_attention_probs.ravel())) / torch.max(cross_attention_probs.ravel())).clip(0, 1) | |
# c = (1 - m) * cross_attention_probs.reshape(1, 1, -1) + m # PAIntA scaling coefficients | |
# Compute scaling coefficients for the similarity matrix | |
# Select the cross attention values for the correct tokens only! | |
batch_size, dims, channels = cross_attention_probs.shape | |
batch_size = batch_size // attn.heads | |
cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels)) # B, D, HW, T | |
cross_attention_probs = cross_attention_probs.mean(dim=1) # B, HW, T | |
cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1) # B, HW | |
cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape) # , B, H, W | |
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to( | |
self_attention_output_hidden_states.device | |
) | |
cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0] # optional smoothing B, H, W | |
# Median normalization | |
cross_attention_probs = cross_attention_probs.reshape(batch_size, -1) # B, HW | |
cross_attention_probs = ( | |
cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values | |
) / cross_attention_probs.max(dim=-1, keepdim=True).values | |
cross_attention_probs = cross_attention_probs.clip(0, 1) | |
c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m | |
c = c.repeat_interleave(attn.heads, 0) # BD, HW | |
if self.do_classifier_free_guidance: | |
c = torch.cat([c, c]) # 2BD, HW | |
# Rescaling the original self-attention matrix | |
self_attention_scores_rescaled = self_attention_scores * c | |
self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1) | |
# Continuing the self attention normally using the new matrix | |
hidden_states = torch.bmm(self_attention_probs_rescaled, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + input_hidden_states | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline): | |
def get_tokenized_prompt(self, prompt): | |
out = self.tokenizer(prompt) | |
return [self.tokenizer.decode(x) for x in out["input_ids"]] | |
def init_attn_processors( | |
self, | |
mask, | |
token_idx, | |
use_painta=True, | |
use_rasg=True, | |
painta_scale_factors=[2, 4], # 64x64 -> [16x16, 32x32] | |
rasg_scale_factor=4, # 64x64 -> 16x16 | |
self_attention_layer_name="attn1", | |
cross_attention_layer_name="attn2", | |
list_of_painta_layer_names=None, | |
list_of_rasg_layer_names=None, | |
): | |
default_processor = AttnProcessor() | |
width, height = mask.shape[-2:] | |
width, height = width // self.vae_scale_factor, height // self.vae_scale_factor | |
painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors] | |
rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor | |
attn_processors = {} | |
for x in self.unet.attn_processors: | |
if (list_of_painta_layer_names is None and self_attention_layer_name in x) or ( | |
list_of_painta_layer_names is not None and x in list_of_painta_layer_names | |
): | |
if use_painta: | |
transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", "")) | |
attn_processors[x] = PAIntAAttnProcessor( | |
transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors | |
) | |
else: | |
attn_processors[x] = default_processor | |
elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or ( | |
list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names | |
): | |
if use_rasg: | |
attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor) | |
else: | |
attn_processors[x] = default_processor | |
self.unet.set_attn_processor(attn_processors) | |
# import json | |
# with open('/home/hayk.manukyan/repos/diffusers/debug.txt', 'a') as f: | |
# json.dump({x:str(y) for x,y in self.unet.attn_processors.items()}, f, indent=4) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: PipelineImageInput = None, | |
mask_image: PipelineImageInput = None, | |
masked_image_latents: torch.Tensor = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
padding_mask_crop: Optional[int] = None, | |
strength: float = 1.0, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.5, | |
positive_prompt: Optional[str] = "", | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.01, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: int = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
use_painta=True, | |
use_rasg=True, | |
self_attention_layer_name=".attn1", | |
cross_attention_layer_name=".attn2", | |
painta_scale_factors=[2, 4], # 16 x 16 and 32 x 32 | |
rasg_scale_factor=4, # 16x16 by default | |
list_of_painta_layer_names=None, | |
list_of_rasg_layer_names=None, | |
**kwargs, | |
): | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# | |
prompt_no_positives = prompt | |
if isinstance(prompt, list): | |
prompt = [x + positive_prompt for x in prompt] | |
else: | |
prompt = prompt + positive_prompt | |
# 1. Check inputs | |
self.check_inputs( | |
prompt, | |
image, | |
mask_image, | |
height, | |
width, | |
strength, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
padding_mask_crop, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# assert batch_size == 1, "Does not work with batch size > 1 currently" | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None: | |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True | |
image_embeds, negative_image_embeds = self.encode_image( | |
ip_adapter_image, device, num_images_per_prompt, output_hidden_state | |
) | |
if self.do_classifier_free_guidance: | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
# 4. set timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
timesteps, num_inference_steps = self.get_timesteps( | |
num_inference_steps=num_inference_steps, strength=strength, device=device | |
) | |
# check that number of inference steps is not < 1 - as this doesn't make sense | |
if num_inference_steps < 1: | |
raise ValueError( | |
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
) | |
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
is_strength_max = strength == 1.0 | |
# 5. Preprocess mask and image | |
if padding_mask_crop is not None: | |
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) | |
resize_mode = "fill" | |
else: | |
crops_coords = None | |
resize_mode = "default" | |
original_image = image | |
init_image = self.image_processor.preprocess( | |
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode | |
) | |
init_image = init_image.to(dtype=torch.float32) | |
# 6. Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
num_channels_unet = self.unet.config.in_channels | |
return_image_latents = num_channels_unet == 4 | |
latents_outputs = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
image=init_image, | |
timestep=latent_timestep, | |
is_strength_max=is_strength_max, | |
return_noise=True, | |
return_image_latents=return_image_latents, | |
) | |
if return_image_latents: | |
latents, noise, image_latents = latents_outputs | |
else: | |
latents, noise = latents_outputs | |
# 7. Prepare mask latent variables | |
mask_condition = self.mask_processor.preprocess( | |
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords | |
) | |
if masked_image_latents is None: | |
masked_image = init_image * (mask_condition < 0.5) | |
else: | |
masked_image = masked_image_latents | |
mask, masked_image_latents = self.prepare_mask_latents( | |
mask_condition, | |
masked_image, | |
batch_size * num_images_per_prompt, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
self.do_classifier_free_guidance, | |
) | |
# 7.5 Setting up HD-Painter | |
# Get the indices of the tokens to be modified by both RASG and PAIntA | |
token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [ | |
self.get_tokenized_prompt(prompt).index("<|endoftext|>") | |
] | |
# Setting up the attention processors | |
self.init_attn_processors( | |
mask_condition, | |
token_idx, | |
use_painta, | |
use_rasg, | |
painta_scale_factors=painta_scale_factors, | |
rasg_scale_factor=rasg_scale_factor, | |
self_attention_layer_name=self_attention_layer_name, | |
cross_attention_layer_name=cross_attention_layer_name, | |
list_of_painta_layer_names=list_of_painta_layer_names, | |
list_of_rasg_layer_names=list_of_rasg_layer_names, | |
) | |
# 8. Check that sizes of mask, masked image and latents match | |
if num_channels_unet == 9: | |
# default case for runwayml/stable-diffusion-inpainting | |
num_channels_mask = mask.shape[1] | |
num_channels_masked_image = masked_image_latents.shape[1] | |
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
" `pipeline.unet` or your `mask_image` or `image` input." | |
) | |
elif num_channels_unet != 4: | |
raise ValueError( | |
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." | |
) | |
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
if use_rasg: | |
extra_step_kwargs["generator"] = None | |
# 9.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None | |
# 9.2 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 10. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
painta_active = True | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
if t < 500 and painta_active: | |
self.init_attn_processors( | |
mask_condition, | |
token_idx, | |
False, | |
use_rasg, | |
painta_scale_factors=painta_scale_factors, | |
rasg_scale_factor=rasg_scale_factor, | |
self_attention_layer_name=self_attention_layer_name, | |
cross_attention_layer_name=cross_attention_layer_name, | |
list_of_painta_layer_names=list_of_painta_layer_names, | |
list_of_rasg_layer_names=list_of_rasg_layer_names, | |
) | |
painta_active = False | |
with torch.enable_grad(): | |
self.unet.zero_grad() | |
latents = latents.detach() | |
latents.requires_grad = True | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# concat latents, mask, masked_image_latents in the channel dimension | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if num_channels_unet == 9: | |
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) | |
self.scheduler.latents = latents | |
self.encoder_hidden_states = prompt_embeds | |
for attn_processor in self.unet.attn_processors.values(): | |
attn_processor.encoder_hidden_states = prompt_embeds | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if use_rasg: | |
# Perform RASG | |
_, _, height, width = mask_condition.shape # 512 x 512 | |
scale_factor = self.vae_scale_factor * rasg_scale_factor # 8 * 4 = 32 | |
# TODO: Fix for > 1 batch_size | |
rasg_mask = F.interpolate( | |
mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic" | |
)[0, 0] # mode is nearest by default, B, H, W | |
# Aggregate the saved attention maps | |
attn_map = [] | |
for processor in self.unet.attn_processors.values(): | |
if hasattr(processor, "attention_scores") and processor.attention_scores is not None: | |
if self.do_classifier_free_guidance: | |
attn_map.append(processor.attention_scores.chunk(2)[1]) # (B/2) x H, 256, 77 | |
else: | |
attn_map.append(processor.attention_scores) # B x H, 256, 77 ? | |
attn_map = ( | |
torch.cat(attn_map) | |
.mean(0) | |
.permute(1, 0) | |
.reshape((-1, height // scale_factor, width // scale_factor)) | |
) # 77, 16, 16 | |
# Compute the attention score | |
attn_score = -sum( | |
[ | |
F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device)) | |
for x in attn_map[token_idx] | |
] | |
) | |
# Backward the score and compute the gradients | |
attn_score.backward() | |
# Normalzie the gradients and compute the noise component | |
variance_noise = latents.grad.detach() | |
# print("VARIANCE SHAPE", variance_noise.shape) | |
variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True) | |
variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True) | |
else: | |
variance_noise = None | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise | |
)[0] | |
if num_channels_unet == 4: | |
init_latents_proper = image_latents | |
if self.do_classifier_free_guidance: | |
init_mask, _ = mask.chunk(2) | |
else: | |
init_mask = mask | |
if i < len(timesteps) - 1: | |
noise_timestep = timesteps[i + 1] | |
init_latents_proper = self.scheduler.add_noise( | |
init_latents_proper, noise, torch.tensor([noise_timestep]) | |
) | |
latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
mask = callback_outputs.pop("mask", mask) | |
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
condition_kwargs = {} | |
if isinstance(self.vae, AsymmetricAutoencoderKL): | |
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) | |
init_image_condition = init_image.clone() | |
init_image = self._encode_vae_image(init_image, generator=generator) | |
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) | |
condition_kwargs = {"image": init_image_condition, "mask": mask_condition} | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs | |
)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
if padding_mask_crop is not None: | |
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
# ============= Utility Functions ============== # | |
class GaussianSmoothing(nn.Module): | |
""" | |
Apply gaussian smoothing on a | |
1d, 2d or 3d tensor. Filtering is performed seperately for each channel | |
in the input using a depthwise convolution. | |
Arguments: | |
channels (int, sequence): Number of channels of the input tensors. Output will | |
have this number of channels as well. | |
kernel_size (int, sequence): Size of the gaussian kernel. | |
sigma (float, sequence): Standard deviation of the gaussian kernel. | |
dim (int, optional): The number of dimensions of the data. | |
Default value is 2 (spatial). | |
""" | |
def __init__(self, channels, kernel_size, sigma, dim=2): | |
super(GaussianSmoothing, self).__init__() | |
if isinstance(kernel_size, numbers.Number): | |
kernel_size = [kernel_size] * dim | |
if isinstance(sigma, numbers.Number): | |
sigma = [sigma] * dim | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer("weight", kernel) | |
self.groups = channels | |
if dim == 1: | |
self.conv = F.conv1d | |
elif dim == 2: | |
self.conv = F.conv2d | |
elif dim == 3: | |
self.conv = F.conv3d | |
else: | |
raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) | |
def forward(self, input): | |
""" | |
Apply gaussian filter to input. | |
Arguments: | |
input (torch.Tensor): Input to apply gaussian filter on. | |
Returns: | |
filtered (torch.Tensor): Filtered output. | |
""" | |
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same") | |
def get_attention_scores( | |
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None | |
) -> torch.Tensor: | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
return attention_scores | |