BleachNick's picture
upload required packages
87d40d2
|
raw
history blame
5.88 kB
# Latent Consistency Distillation Example:
[Latent Consistency Models (LCMs)](https://arxiv.org/abs/2310.04378) is a method to distill a latent diffusion model to enable swift inference with minimal steps. This example demonstrates how to use latent consistency distillation to distill SDXL for inference with few timesteps.
## Full model distillation
### Running locally with PyTorch
#### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the example folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗 Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell e.g. a notebook
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
#### Example
The following uses the [Conceptual Captions 12M (CC12M) dataset](https://github.com/google-research-datasets/conceptual-12m) as an example, and for illustrative purposes only. For best results you may consider large and high-quality text-image datasets such as [LAION](https://laion.ai/blog/laion-400-open-dataset/). You may also need to search the hyperparameter space according to the dataset you use.
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_sdxl_wds.py \
--pretrained_teacher_model=$MODEL_NAME \
--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \
--output_dir=$OUTPUT_DIR \
--mixed_precision=fp16 \
--resolution=1024 \
--learning_rate=1e-6 --loss_type="huber" --use_fix_crop_and_size --ema_decay=0.95 --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \
--train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \
--validation_steps=200 \
--checkpointing_steps=200 --checkpoints_total_limit=10 \
--train_batch_size=12 \
--gradient_checkpointing --enable_xformers_memory_efficient_attention \
--gradient_accumulation_steps=1 \
--use_8bit_adam \
--resume_from_checkpoint=latest \
--report_to=wandb \
--seed=453645634 \
--push_to_hub \
```
## LCM-LoRA
Instead of fine-tuning the full model, we can also just train a LoRA that can be injected into any SDXL model.
### Example
The following uses the [Conceptual Captions 12M (CC12M) dataset](https://github.com/google-research-datasets/conceptual-12m) as an example. For best results you may consider large and high-quality text-image datasets such as [LAION](https://laion.ai/blog/laion-400-open-dataset/).
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_lora_sdxl_wds.py \
--pretrained_teacher_model=$MODEL_DIR \
--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \
--output_dir=$OUTPUT_DIR \
--mixed_precision=fp16 \
--resolution=1024 \
--lora_rank=64 \
--learning_rate=1e-4 --loss_type="huber" --use_fix_crop_and_size --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \
--train_shards_path_or_url="pipe:curl -L -s https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset/resolve/main/data/{00000..01099}.tar?download=true" \
--validation_steps=200 \
--checkpointing_steps=200 --checkpoints_total_limit=10 \
--train_batch_size=12 \
--gradient_checkpointing --enable_xformers_memory_efficient_attention \
--gradient_accumulation_steps=1 \
--use_8bit_adam \
--resume_from_checkpoint=latest \
--report_to=wandb \
--seed=453645634 \
--push_to_hub \
```
We provide another version for LCM LoRA SDXL that follows best practices of `peft` and leverages the `datasets` library for quick experimentation. The script doesn't load two UNets unlike `train_lcm_distill_lora_sdxl_wds.py` which reduces the memory requirements quite a bit.
Below is an example training command that trains an LCM LoRA on the [Narutos dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions):
```bash
export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
export VAE_PATH="madebyollin/sdxl-vae-fp16-fix"
accelerate launch train_lcm_distill_lora_sdxl.py \
--pretrained_teacher_model=${MODEL_NAME} \
--pretrained_vae_model_name_or_path=${VAE_PATH} \
--output_dir="narutos-lora-lcm-sdxl" \
--mixed_precision="fp16" \
--dataset_name=$DATASET_NAME \
--resolution=1024 \
--train_batch_size=24 \
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--use_8bit_adam \
--lora_rank=64 \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=3000 \
--checkpointing_steps=500 \
--validation_steps=50 \
--seed="0" \
--report_to="wandb" \
--push_to_hub
```