Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import sys | |
import tempfile | |
import safetensors | |
sys.path.append("..") | |
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class TextToImageLCM(ExamplesTestsAccelerate): | |
def test_text_to_image_lcm_lora_sdxl(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py | |
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--lora_rank 4 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
# make sure the state_dict has the correct naming in the parameters. | |
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
self.assertTrue(is_lora) | |
def test_text_to_image_lcm_lora_sdxl_checkpointing(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py | |
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--lora_rank 4 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 7 | |
--checkpointing_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6"}, | |
) | |
test_args = f""" | |
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py | |
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 64 | |
--lora_rank 4 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 9 | |
--checkpointing_steps 2 | |
--resume_from_checkpoint latest | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, | |
) | |