Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import sys | |
import tempfile | |
sys.path.append("..") | |
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class CustomDiffusion(ExamplesTestsAccelerate): | |
def test_custom_diffusion(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir docs/source/en/imgs | |
--instance_prompt <new1> | |
--resolution 64 | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 1.0e-05 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--modifier_token <new1> | |
--no_safe_serialization | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_custom_diffusion_weights.bin"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "<new1>.bin"))) | |
def test_custom_diffusion_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=6 | |
--checkpoints_total_limit=2 | |
--checkpointing_steps=2 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) | |
def test_custom_diffusion_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=4 | |
--checkpointing_steps=2 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + test_args) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
resume_run_args = f""" | |
examples/custom_diffusion/train_custom_diffusion.py | |
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
--instance_data_dir=docs/source/en/imgs | |
--output_dir={tmpdir} | |
--instance_prompt=<new1> | |
--resolution=64 | |
--train_batch_size=1 | |
--modifier_token=<new1> | |
--dataloader_num_workers=0 | |
--max_train_steps=8 | |
--checkpointing_steps=2 | |
--resume_from_checkpoint=checkpoint-4 | |
--checkpoints_total_limit=2 | |
--no_safe_serialization | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) | |