Spaces:
Running
on
Zero
Running
on
Zero
UltraEdit-SD3
/
UltraEdit
/diffusers
/examples
/unconditional_image_generation
/test_unconditional.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import sys | |
import tempfile | |
sys.path.append("..") | |
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class Unconditional(ExamplesTestsAccelerate): | |
def test_train_unconditional(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
test_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 2 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
""".split() | |
run_command(self._launch_args + test_args, return_stdout=True) | |
# save_pretrained smoke test | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
def test_unconditional_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
initial_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 2 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
# checkpoint-2 should have been deleted | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
initial_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 1 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 1 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--checkpointing_steps=2 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4", "checkpoint-6"}, | |
) | |
resume_run_args = f""" | |
examples/unconditional_image_generation/train_unconditional.py | |
--dataset_name hf-internal-testing/dummy_image_class_data | |
--model_config_name_or_path diffusers/ddpm_dummy | |
--resolution 64 | |
--output_dir {tmpdir} | |
--train_batch_size 1 | |
--num_epochs 2 | |
--gradient_accumulation_steps 1 | |
--ddpm_num_inference_steps 1 | |
--learning_rate 1e-3 | |
--lr_warmup_steps 5 | |
--resume_from_checkpoint=checkpoint-6 | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-10", "checkpoint-12"}, | |
) | |