Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
from safetensors.torch import load_file | |
from diffusers import MotionAdapter | |
def convert_motion_module(original_state_dict): | |
converted_state_dict = {} | |
for k, v in original_state_dict.items(): | |
if "pos_encoder" in k: | |
continue | |
else: | |
converted_state_dict[ | |
k.replace(".norms.0", ".norm1") | |
.replace(".norms.1", ".norm2") | |
.replace(".ff_norm", ".norm3") | |
.replace(".attention_blocks.0", ".attn1") | |
.replace(".attention_blocks.1", ".attn2") | |
.replace(".temporal_transformer", "") | |
] = v | |
return converted_state_dict | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--ckpt_path", type=str, required=True) | |
parser.add_argument("--output_path", type=str, required=True) | |
parser.add_argument("--use_motion_mid_block", action="store_true") | |
parser.add_argument("--motion_max_seq_length", type=int, default=32) | |
parser.add_argument("--block_out_channels", nargs="+", default=[320, 640, 1280, 1280], type=int) | |
parser.add_argument("--save_fp16", action="store_true") | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = get_args() | |
if args.ckpt_path.endswith(".safetensors"): | |
state_dict = load_file(args.ckpt_path) | |
else: | |
state_dict = torch.load(args.ckpt_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
conv_state_dict = convert_motion_module(state_dict) | |
adapter = MotionAdapter( | |
block_out_channels=args.block_out_channels, | |
use_motion_mid_block=args.use_motion_mid_block, | |
motion_max_seq_length=args.motion_max_seq_length, | |
) | |
# skip loading position embeddings | |
adapter.load_state_dict(conv_state_dict, strict=False) | |
adapter.save_pretrained(args.output_path) | |
if args.save_fp16: | |
adapter.to(dtype=torch.float16).save_pretrained(args.output_path, variant="fp16") | |