Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import os | |
import urllib | |
import warnings | |
from argparse import ArgumentParser | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from huggingface_hub.utils import insecure_hashlib | |
from safetensors.torch import load_file as stl | |
from tqdm import tqdm | |
from diffusers import AutoencoderKL, ConsistencyDecoderVAE, DiffusionPipeline, StableDiffusionPipeline, UNet2DModel | |
from diffusers.models.autoencoders.vae import Encoder | |
from diffusers.models.embeddings import TimestepEmbedding | |
from diffusers.models.unets.unet_2d_blocks import ResnetDownsampleBlock2D, ResnetUpsampleBlock2D, UNetMidBlock2D | |
args = ArgumentParser() | |
args.add_argument("--save_pretrained", required=False, default=None, type=str) | |
args.add_argument("--test_image", required=True, type=str) | |
args = args.parse_args() | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
# from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/gaussian_diffusion.py#L895 """ | |
res = arr[timesteps].float() | |
dims_to_append = len(broadcast_shape) - len(res.shape) | |
return res[(...,) + (None,) * dims_to_append] | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
# from: https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/gaussian_diffusion.py#L45 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return torch.tensor(betas) | |
def _download(url: str, root: str): | |
os.makedirs(root, exist_ok=True) | |
filename = os.path.basename(url) | |
expected_sha256 = url.split("/")[-2] | |
download_target = os.path.join(root, filename) | |
if os.path.exists(download_target) and not os.path.isfile(download_target): | |
raise RuntimeError(f"{download_target} exists and is not a regular file") | |
if os.path.isfile(download_target): | |
if insecure_hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: | |
return download_target | |
else: | |
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
with tqdm( | |
total=int(source.info().get("Content-Length")), | |
ncols=80, | |
unit="iB", | |
unit_scale=True, | |
unit_divisor=1024, | |
) as loop: | |
while True: | |
buffer = source.read(8192) | |
if not buffer: | |
break | |
output.write(buffer) | |
loop.update(len(buffer)) | |
if insecure_hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: | |
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") | |
return download_target | |
class ConsistencyDecoder: | |
def __init__(self, device="cuda:0", download_root=os.path.expanduser("~/.cache/clip")): | |
self.n_distilled_steps = 64 | |
download_target = _download( | |
"https://openaipublic.azureedge.net/diff-vae/c9cebd3132dd9c42936d803e33424145a748843c8f716c0814838bdc8a2fe7cb/decoder.pt", | |
download_root, | |
) | |
self.ckpt = torch.jit.load(download_target).to(device) | |
self.device = device | |
sigma_data = 0.5 | |
betas = betas_for_alpha_bar(1024, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2).to(device) | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod) | |
sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod) | |
sigmas = torch.sqrt(1.0 / alphas_cumprod - 1) | |
self.c_skip = sqrt_recip_alphas_cumprod * sigma_data**2 / (sigmas**2 + sigma_data**2) | |
self.c_out = sigmas * sigma_data / (sigmas**2 + sigma_data**2) ** 0.5 | |
self.c_in = sqrt_recip_alphas_cumprod / (sigmas**2 + sigma_data**2) ** 0.5 | |
def round_timesteps(timesteps, total_timesteps, n_distilled_steps, truncate_start=True): | |
with torch.no_grad(): | |
space = torch.div(total_timesteps, n_distilled_steps, rounding_mode="floor") | |
rounded_timesteps = (torch.div(timesteps, space, rounding_mode="floor") + 1) * space | |
if truncate_start: | |
rounded_timesteps[rounded_timesteps == total_timesteps] -= space | |
else: | |
rounded_timesteps[rounded_timesteps == total_timesteps] -= space | |
rounded_timesteps[rounded_timesteps == 0] += space | |
return rounded_timesteps | |
def ldm_transform_latent(z, extra_scale_factor=1): | |
channel_means = [0.38862467, 0.02253063, 0.07381133, -0.0171294] | |
channel_stds = [0.9654121, 1.0440036, 0.76147926, 0.77022034] | |
if len(z.shape) != 4: | |
raise ValueError() | |
z = z * 0.18215 | |
channels = [z[:, i] for i in range(z.shape[1])] | |
channels = [extra_scale_factor * (c - channel_means[i]) / channel_stds[i] for i, c in enumerate(channels)] | |
return torch.stack(channels, dim=1) | |
def __call__( | |
self, | |
features: torch.Tensor, | |
schedule=[1.0, 0.5], | |
generator=None, | |
): | |
features = self.ldm_transform_latent(features) | |
ts = self.round_timesteps( | |
torch.arange(0, 1024), | |
1024, | |
self.n_distilled_steps, | |
truncate_start=False, | |
) | |
shape = ( | |
features.size(0), | |
3, | |
8 * features.size(2), | |
8 * features.size(3), | |
) | |
x_start = torch.zeros(shape, device=features.device, dtype=features.dtype) | |
schedule_timesteps = [int((1024 - 1) * s) for s in schedule] | |
for i in schedule_timesteps: | |
t = ts[i].item() | |
t_ = torch.tensor([t] * features.shape[0]).to(self.device) | |
# noise = torch.randn_like(x_start) | |
noise = torch.randn(x_start.shape, dtype=x_start.dtype, generator=generator).to(device=x_start.device) | |
x_start = ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t_, x_start.shape) * x_start | |
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t_, x_start.shape) * noise | |
) | |
c_in = _extract_into_tensor(self.c_in, t_, x_start.shape) | |
import torch.nn.functional as F | |
from diffusers import UNet2DModel | |
if isinstance(self.ckpt, UNet2DModel): | |
input = torch.concat([c_in * x_start, F.upsample_nearest(features, scale_factor=8)], dim=1) | |
model_output = self.ckpt(input, t_).sample | |
else: | |
model_output = self.ckpt(c_in * x_start, t_, features=features) | |
B, C = x_start.shape[:2] | |
model_output, _ = torch.split(model_output, C, dim=1) | |
pred_xstart = ( | |
_extract_into_tensor(self.c_out, t_, x_start.shape) * model_output | |
+ _extract_into_tensor(self.c_skip, t_, x_start.shape) * x_start | |
).clamp(-1, 1) | |
x_start = pred_xstart | |
return x_start | |
def save_image(image, name): | |
import numpy as np | |
from PIL import Image | |
image = image[0].cpu().numpy() | |
image = (image + 1.0) * 127.5 | |
image = image.clip(0, 255).astype(np.uint8) | |
image = Image.fromarray(image.transpose(1, 2, 0)) | |
image.save(name) | |
def load_image(uri, size=None, center_crop=False): | |
import numpy as np | |
from PIL import Image | |
image = Image.open(uri) | |
if center_crop: | |
image = image.crop( | |
( | |
(image.width - min(image.width, image.height)) // 2, | |
(image.height - min(image.width, image.height)) // 2, | |
(image.width + min(image.width, image.height)) // 2, | |
(image.height + min(image.width, image.height)) // 2, | |
) | |
) | |
if size is not None: | |
image = image.resize(size) | |
image = torch.tensor(np.array(image).transpose(2, 0, 1)).unsqueeze(0).float() | |
image = image / 127.5 - 1.0 | |
return image | |
class TimestepEmbedding_(nn.Module): | |
def __init__(self, n_time=1024, n_emb=320, n_out=1280) -> None: | |
super().__init__() | |
self.emb = nn.Embedding(n_time, n_emb) | |
self.f_1 = nn.Linear(n_emb, n_out) | |
self.f_2 = nn.Linear(n_out, n_out) | |
def forward(self, x) -> torch.Tensor: | |
x = self.emb(x) | |
x = self.f_1(x) | |
x = F.silu(x) | |
return self.f_2(x) | |
class ImageEmbedding(nn.Module): | |
def __init__(self, in_channels=7, out_channels=320) -> None: | |
super().__init__() | |
self.f = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) | |
def forward(self, x) -> torch.Tensor: | |
return self.f(x) | |
class ImageUnembedding(nn.Module): | |
def __init__(self, in_channels=320, out_channels=6) -> None: | |
super().__init__() | |
self.gn = nn.GroupNorm(32, in_channels) | |
self.f = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) | |
def forward(self, x) -> torch.Tensor: | |
return self.f(F.silu(self.gn(x))) | |
class ConvResblock(nn.Module): | |
def __init__(self, in_features=320, out_features=320) -> None: | |
super().__init__() | |
self.f_t = nn.Linear(1280, out_features * 2) | |
self.gn_1 = nn.GroupNorm(32, in_features) | |
self.f_1 = nn.Conv2d(in_features, out_features, kernel_size=3, padding=1) | |
self.gn_2 = nn.GroupNorm(32, out_features) | |
self.f_2 = nn.Conv2d(out_features, out_features, kernel_size=3, padding=1) | |
skip_conv = in_features != out_features | |
self.f_s = nn.Conv2d(in_features, out_features, kernel_size=1, padding=0) if skip_conv else nn.Identity() | |
def forward(self, x, t): | |
x_skip = x | |
t = self.f_t(F.silu(t)) | |
t = t.chunk(2, dim=1) | |
t_1 = t[0].unsqueeze(dim=2).unsqueeze(dim=3) + 1 | |
t_2 = t[1].unsqueeze(dim=2).unsqueeze(dim=3) | |
gn_1 = F.silu(self.gn_1(x)) | |
f_1 = self.f_1(gn_1) | |
gn_2 = self.gn_2(f_1) | |
return self.f_s(x_skip) + self.f_2(F.silu(gn_2 * t_1 + t_2)) | |
# Also ConvResblock | |
class Downsample(nn.Module): | |
def __init__(self, in_channels=320) -> None: | |
super().__init__() | |
self.f_t = nn.Linear(1280, in_channels * 2) | |
self.gn_1 = nn.GroupNorm(32, in_channels) | |
self.f_1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
self.gn_2 = nn.GroupNorm(32, in_channels) | |
self.f_2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
def forward(self, x, t) -> torch.Tensor: | |
x_skip = x | |
t = self.f_t(F.silu(t)) | |
t_1, t_2 = t.chunk(2, dim=1) | |
t_1 = t_1.unsqueeze(2).unsqueeze(3) + 1 | |
t_2 = t_2.unsqueeze(2).unsqueeze(3) | |
gn_1 = F.silu(self.gn_1(x)) | |
avg_pool2d = F.avg_pool2d(gn_1, kernel_size=(2, 2), stride=None) | |
f_1 = self.f_1(avg_pool2d) | |
gn_2 = self.gn_2(f_1) | |
f_2 = self.f_2(F.silu(t_2 + (t_1 * gn_2))) | |
return f_2 + F.avg_pool2d(x_skip, kernel_size=(2, 2), stride=None) | |
# Also ConvResblock | |
class Upsample(nn.Module): | |
def __init__(self, in_channels=1024) -> None: | |
super().__init__() | |
self.f_t = nn.Linear(1280, in_channels * 2) | |
self.gn_1 = nn.GroupNorm(32, in_channels) | |
self.f_1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
self.gn_2 = nn.GroupNorm(32, in_channels) | |
self.f_2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
def forward(self, x, t) -> torch.Tensor: | |
x_skip = x | |
t = self.f_t(F.silu(t)) | |
t_1, t_2 = t.chunk(2, dim=1) | |
t_1 = t_1.unsqueeze(2).unsqueeze(3) + 1 | |
t_2 = t_2.unsqueeze(2).unsqueeze(3) | |
gn_1 = F.silu(self.gn_1(x)) | |
upsample = F.upsample_nearest(gn_1, scale_factor=2) | |
f_1 = self.f_1(upsample) | |
gn_2 = self.gn_2(f_1) | |
f_2 = self.f_2(F.silu(t_2 + (t_1 * gn_2))) | |
return f_2 + F.upsample_nearest(x_skip, scale_factor=2) | |
class ConvUNetVAE(nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
self.embed_image = ImageEmbedding() | |
self.embed_time = TimestepEmbedding_() | |
down_0 = nn.ModuleList( | |
[ | |
ConvResblock(320, 320), | |
ConvResblock(320, 320), | |
ConvResblock(320, 320), | |
Downsample(320), | |
] | |
) | |
down_1 = nn.ModuleList( | |
[ | |
ConvResblock(320, 640), | |
ConvResblock(640, 640), | |
ConvResblock(640, 640), | |
Downsample(640), | |
] | |
) | |
down_2 = nn.ModuleList( | |
[ | |
ConvResblock(640, 1024), | |
ConvResblock(1024, 1024), | |
ConvResblock(1024, 1024), | |
Downsample(1024), | |
] | |
) | |
down_3 = nn.ModuleList( | |
[ | |
ConvResblock(1024, 1024), | |
ConvResblock(1024, 1024), | |
ConvResblock(1024, 1024), | |
] | |
) | |
self.down = nn.ModuleList( | |
[ | |
down_0, | |
down_1, | |
down_2, | |
down_3, | |
] | |
) | |
self.mid = nn.ModuleList( | |
[ | |
ConvResblock(1024, 1024), | |
ConvResblock(1024, 1024), | |
] | |
) | |
up_3 = nn.ModuleList( | |
[ | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 * 2, 1024), | |
Upsample(1024), | |
] | |
) | |
up_2 = nn.ModuleList( | |
[ | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 * 2, 1024), | |
ConvResblock(1024 + 640, 1024), | |
Upsample(1024), | |
] | |
) | |
up_1 = nn.ModuleList( | |
[ | |
ConvResblock(1024 + 640, 640), | |
ConvResblock(640 * 2, 640), | |
ConvResblock(640 * 2, 640), | |
ConvResblock(320 + 640, 640), | |
Upsample(640), | |
] | |
) | |
up_0 = nn.ModuleList( | |
[ | |
ConvResblock(320 + 640, 320), | |
ConvResblock(320 * 2, 320), | |
ConvResblock(320 * 2, 320), | |
ConvResblock(320 * 2, 320), | |
] | |
) | |
self.up = nn.ModuleList( | |
[ | |
up_0, | |
up_1, | |
up_2, | |
up_3, | |
] | |
) | |
self.output = ImageUnembedding() | |
def forward(self, x, t, features) -> torch.Tensor: | |
converted = hasattr(self, "converted") and self.converted | |
x = torch.cat([x, F.upsample_nearest(features, scale_factor=8)], dim=1) | |
if converted: | |
t = self.time_embedding(self.time_proj(t)) | |
else: | |
t = self.embed_time(t) | |
x = self.embed_image(x) | |
skips = [x] | |
for i, down in enumerate(self.down): | |
if converted and i in [0, 1, 2, 3]: | |
x, skips_ = down(x, t) | |
for skip in skips_: | |
skips.append(skip) | |
else: | |
for block in down: | |
x = block(x, t) | |
skips.append(x) | |
print(x.float().abs().sum()) | |
if converted: | |
x = self.mid(x, t) | |
else: | |
for i in range(2): | |
x = self.mid[i](x, t) | |
print(x.float().abs().sum()) | |
for i, up in enumerate(self.up[::-1]): | |
if converted and i in [0, 1, 2, 3]: | |
skip_4 = skips.pop() | |
skip_3 = skips.pop() | |
skip_2 = skips.pop() | |
skip_1 = skips.pop() | |
skips_ = (skip_1, skip_2, skip_3, skip_4) | |
x = up(x, skips_, t) | |
else: | |
for block in up: | |
if isinstance(block, ConvResblock): | |
x = torch.concat([x, skips.pop()], dim=1) | |
x = block(x, t) | |
return self.output(x) | |
def rename_state_dict_key(k): | |
k = k.replace("blocks.", "") | |
for i in range(5): | |
k = k.replace(f"down_{i}_", f"down.{i}.") | |
k = k.replace(f"conv_{i}.", f"{i}.") | |
k = k.replace(f"up_{i}_", f"up.{i}.") | |
k = k.replace(f"mid_{i}", f"mid.{i}") | |
k = k.replace("upsamp.", "4.") | |
k = k.replace("downsamp.", "3.") | |
k = k.replace("f_t.w", "f_t.weight").replace("f_t.b", "f_t.bias") | |
k = k.replace("f_1.w", "f_1.weight").replace("f_1.b", "f_1.bias") | |
k = k.replace("f_2.w", "f_2.weight").replace("f_2.b", "f_2.bias") | |
k = k.replace("f_s.w", "f_s.weight").replace("f_s.b", "f_s.bias") | |
k = k.replace("f.w", "f.weight").replace("f.b", "f.bias") | |
k = k.replace("gn_1.g", "gn_1.weight").replace("gn_1.b", "gn_1.bias") | |
k = k.replace("gn_2.g", "gn_2.weight").replace("gn_2.b", "gn_2.bias") | |
k = k.replace("gn.g", "gn.weight").replace("gn.b", "gn.bias") | |
return k | |
def rename_state_dict(sd, embedding): | |
sd = {rename_state_dict_key(k): v for k, v in sd.items()} | |
sd["embed_time.emb.weight"] = embedding["weight"] | |
return sd | |
# encode with stable diffusion vae | |
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
pipe.vae.cuda() | |
# construct original decoder with jitted model | |
decoder_consistency = ConsistencyDecoder(device="cuda:0") | |
# construct UNet code, overwrite the decoder with conv_unet_vae | |
model = ConvUNetVAE() | |
model.load_state_dict( | |
rename_state_dict( | |
stl("consistency_decoder.safetensors"), | |
stl("embedding.safetensors"), | |
) | |
) | |
model = model.cuda() | |
decoder_consistency.ckpt = model | |
image = load_image(args.test_image, size=(256, 256), center_crop=True) | |
latent = pipe.vae.encode(image.half().cuda()).latent_dist.sample() | |
# decode with gan | |
sample_gan = pipe.vae.decode(latent).sample.detach() | |
save_image(sample_gan, "gan.png") | |
# decode with conv_unet_vae | |
sample_consistency_orig = decoder_consistency(latent, generator=torch.Generator("cpu").manual_seed(0)) | |
save_image(sample_consistency_orig, "con_orig.png") | |
########### conversion | |
print("CONVERSION") | |
print("DOWN BLOCK ONE") | |
block_one_sd_orig = model.down[0].state_dict() | |
block_one_sd_new = {} | |
for i in range(3): | |
block_one_sd_new[f"resnets.{i}.norm1.weight"] = block_one_sd_orig.pop(f"{i}.gn_1.weight") | |
block_one_sd_new[f"resnets.{i}.norm1.bias"] = block_one_sd_orig.pop(f"{i}.gn_1.bias") | |
block_one_sd_new[f"resnets.{i}.conv1.weight"] = block_one_sd_orig.pop(f"{i}.f_1.weight") | |
block_one_sd_new[f"resnets.{i}.conv1.bias"] = block_one_sd_orig.pop(f"{i}.f_1.bias") | |
block_one_sd_new[f"resnets.{i}.time_emb_proj.weight"] = block_one_sd_orig.pop(f"{i}.f_t.weight") | |
block_one_sd_new[f"resnets.{i}.time_emb_proj.bias"] = block_one_sd_orig.pop(f"{i}.f_t.bias") | |
block_one_sd_new[f"resnets.{i}.norm2.weight"] = block_one_sd_orig.pop(f"{i}.gn_2.weight") | |
block_one_sd_new[f"resnets.{i}.norm2.bias"] = block_one_sd_orig.pop(f"{i}.gn_2.bias") | |
block_one_sd_new[f"resnets.{i}.conv2.weight"] = block_one_sd_orig.pop(f"{i}.f_2.weight") | |
block_one_sd_new[f"resnets.{i}.conv2.bias"] = block_one_sd_orig.pop(f"{i}.f_2.bias") | |
block_one_sd_new["downsamplers.0.norm1.weight"] = block_one_sd_orig.pop("3.gn_1.weight") | |
block_one_sd_new["downsamplers.0.norm1.bias"] = block_one_sd_orig.pop("3.gn_1.bias") | |
block_one_sd_new["downsamplers.0.conv1.weight"] = block_one_sd_orig.pop("3.f_1.weight") | |
block_one_sd_new["downsamplers.0.conv1.bias"] = block_one_sd_orig.pop("3.f_1.bias") | |
block_one_sd_new["downsamplers.0.time_emb_proj.weight"] = block_one_sd_orig.pop("3.f_t.weight") | |
block_one_sd_new["downsamplers.0.time_emb_proj.bias"] = block_one_sd_orig.pop("3.f_t.bias") | |
block_one_sd_new["downsamplers.0.norm2.weight"] = block_one_sd_orig.pop("3.gn_2.weight") | |
block_one_sd_new["downsamplers.0.norm2.bias"] = block_one_sd_orig.pop("3.gn_2.bias") | |
block_one_sd_new["downsamplers.0.conv2.weight"] = block_one_sd_orig.pop("3.f_2.weight") | |
block_one_sd_new["downsamplers.0.conv2.bias"] = block_one_sd_orig.pop("3.f_2.bias") | |
assert len(block_one_sd_orig) == 0 | |
block_one = ResnetDownsampleBlock2D( | |
in_channels=320, | |
out_channels=320, | |
temb_channels=1280, | |
num_layers=3, | |
add_downsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
block_one.load_state_dict(block_one_sd_new) | |
print("DOWN BLOCK TWO") | |
block_two_sd_orig = model.down[1].state_dict() | |
block_two_sd_new = {} | |
for i in range(3): | |
block_two_sd_new[f"resnets.{i}.norm1.weight"] = block_two_sd_orig.pop(f"{i}.gn_1.weight") | |
block_two_sd_new[f"resnets.{i}.norm1.bias"] = block_two_sd_orig.pop(f"{i}.gn_1.bias") | |
block_two_sd_new[f"resnets.{i}.conv1.weight"] = block_two_sd_orig.pop(f"{i}.f_1.weight") | |
block_two_sd_new[f"resnets.{i}.conv1.bias"] = block_two_sd_orig.pop(f"{i}.f_1.bias") | |
block_two_sd_new[f"resnets.{i}.time_emb_proj.weight"] = block_two_sd_orig.pop(f"{i}.f_t.weight") | |
block_two_sd_new[f"resnets.{i}.time_emb_proj.bias"] = block_two_sd_orig.pop(f"{i}.f_t.bias") | |
block_two_sd_new[f"resnets.{i}.norm2.weight"] = block_two_sd_orig.pop(f"{i}.gn_2.weight") | |
block_two_sd_new[f"resnets.{i}.norm2.bias"] = block_two_sd_orig.pop(f"{i}.gn_2.bias") | |
block_two_sd_new[f"resnets.{i}.conv2.weight"] = block_two_sd_orig.pop(f"{i}.f_2.weight") | |
block_two_sd_new[f"resnets.{i}.conv2.bias"] = block_two_sd_orig.pop(f"{i}.f_2.bias") | |
if i == 0: | |
block_two_sd_new[f"resnets.{i}.conv_shortcut.weight"] = block_two_sd_orig.pop(f"{i}.f_s.weight") | |
block_two_sd_new[f"resnets.{i}.conv_shortcut.bias"] = block_two_sd_orig.pop(f"{i}.f_s.bias") | |
block_two_sd_new["downsamplers.0.norm1.weight"] = block_two_sd_orig.pop("3.gn_1.weight") | |
block_two_sd_new["downsamplers.0.norm1.bias"] = block_two_sd_orig.pop("3.gn_1.bias") | |
block_two_sd_new["downsamplers.0.conv1.weight"] = block_two_sd_orig.pop("3.f_1.weight") | |
block_two_sd_new["downsamplers.0.conv1.bias"] = block_two_sd_orig.pop("3.f_1.bias") | |
block_two_sd_new["downsamplers.0.time_emb_proj.weight"] = block_two_sd_orig.pop("3.f_t.weight") | |
block_two_sd_new["downsamplers.0.time_emb_proj.bias"] = block_two_sd_orig.pop("3.f_t.bias") | |
block_two_sd_new["downsamplers.0.norm2.weight"] = block_two_sd_orig.pop("3.gn_2.weight") | |
block_two_sd_new["downsamplers.0.norm2.bias"] = block_two_sd_orig.pop("3.gn_2.bias") | |
block_two_sd_new["downsamplers.0.conv2.weight"] = block_two_sd_orig.pop("3.f_2.weight") | |
block_two_sd_new["downsamplers.0.conv2.bias"] = block_two_sd_orig.pop("3.f_2.bias") | |
assert len(block_two_sd_orig) == 0 | |
block_two = ResnetDownsampleBlock2D( | |
in_channels=320, | |
out_channels=640, | |
temb_channels=1280, | |
num_layers=3, | |
add_downsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
block_two.load_state_dict(block_two_sd_new) | |
print("DOWN BLOCK THREE") | |
block_three_sd_orig = model.down[2].state_dict() | |
block_three_sd_new = {} | |
for i in range(3): | |
block_three_sd_new[f"resnets.{i}.norm1.weight"] = block_three_sd_orig.pop(f"{i}.gn_1.weight") | |
block_three_sd_new[f"resnets.{i}.norm1.bias"] = block_three_sd_orig.pop(f"{i}.gn_1.bias") | |
block_three_sd_new[f"resnets.{i}.conv1.weight"] = block_three_sd_orig.pop(f"{i}.f_1.weight") | |
block_three_sd_new[f"resnets.{i}.conv1.bias"] = block_three_sd_orig.pop(f"{i}.f_1.bias") | |
block_three_sd_new[f"resnets.{i}.time_emb_proj.weight"] = block_three_sd_orig.pop(f"{i}.f_t.weight") | |
block_three_sd_new[f"resnets.{i}.time_emb_proj.bias"] = block_three_sd_orig.pop(f"{i}.f_t.bias") | |
block_three_sd_new[f"resnets.{i}.norm2.weight"] = block_three_sd_orig.pop(f"{i}.gn_2.weight") | |
block_three_sd_new[f"resnets.{i}.norm2.bias"] = block_three_sd_orig.pop(f"{i}.gn_2.bias") | |
block_three_sd_new[f"resnets.{i}.conv2.weight"] = block_three_sd_orig.pop(f"{i}.f_2.weight") | |
block_three_sd_new[f"resnets.{i}.conv2.bias"] = block_three_sd_orig.pop(f"{i}.f_2.bias") | |
if i == 0: | |
block_three_sd_new[f"resnets.{i}.conv_shortcut.weight"] = block_three_sd_orig.pop(f"{i}.f_s.weight") | |
block_three_sd_new[f"resnets.{i}.conv_shortcut.bias"] = block_three_sd_orig.pop(f"{i}.f_s.bias") | |
block_three_sd_new["downsamplers.0.norm1.weight"] = block_three_sd_orig.pop("3.gn_1.weight") | |
block_three_sd_new["downsamplers.0.norm1.bias"] = block_three_sd_orig.pop("3.gn_1.bias") | |
block_three_sd_new["downsamplers.0.conv1.weight"] = block_three_sd_orig.pop("3.f_1.weight") | |
block_three_sd_new["downsamplers.0.conv1.bias"] = block_three_sd_orig.pop("3.f_1.bias") | |
block_three_sd_new["downsamplers.0.time_emb_proj.weight"] = block_three_sd_orig.pop("3.f_t.weight") | |
block_three_sd_new["downsamplers.0.time_emb_proj.bias"] = block_three_sd_orig.pop("3.f_t.bias") | |
block_three_sd_new["downsamplers.0.norm2.weight"] = block_three_sd_orig.pop("3.gn_2.weight") | |
block_three_sd_new["downsamplers.0.norm2.bias"] = block_three_sd_orig.pop("3.gn_2.bias") | |
block_three_sd_new["downsamplers.0.conv2.weight"] = block_three_sd_orig.pop("3.f_2.weight") | |
block_three_sd_new["downsamplers.0.conv2.bias"] = block_three_sd_orig.pop("3.f_2.bias") | |
assert len(block_three_sd_orig) == 0 | |
block_three = ResnetDownsampleBlock2D( | |
in_channels=640, | |
out_channels=1024, | |
temb_channels=1280, | |
num_layers=3, | |
add_downsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
block_three.load_state_dict(block_three_sd_new) | |
print("DOWN BLOCK FOUR") | |
block_four_sd_orig = model.down[3].state_dict() | |
block_four_sd_new = {} | |
for i in range(3): | |
block_four_sd_new[f"resnets.{i}.norm1.weight"] = block_four_sd_orig.pop(f"{i}.gn_1.weight") | |
block_four_sd_new[f"resnets.{i}.norm1.bias"] = block_four_sd_orig.pop(f"{i}.gn_1.bias") | |
block_four_sd_new[f"resnets.{i}.conv1.weight"] = block_four_sd_orig.pop(f"{i}.f_1.weight") | |
block_four_sd_new[f"resnets.{i}.conv1.bias"] = block_four_sd_orig.pop(f"{i}.f_1.bias") | |
block_four_sd_new[f"resnets.{i}.time_emb_proj.weight"] = block_four_sd_orig.pop(f"{i}.f_t.weight") | |
block_four_sd_new[f"resnets.{i}.time_emb_proj.bias"] = block_four_sd_orig.pop(f"{i}.f_t.bias") | |
block_four_sd_new[f"resnets.{i}.norm2.weight"] = block_four_sd_orig.pop(f"{i}.gn_2.weight") | |
block_four_sd_new[f"resnets.{i}.norm2.bias"] = block_four_sd_orig.pop(f"{i}.gn_2.bias") | |
block_four_sd_new[f"resnets.{i}.conv2.weight"] = block_four_sd_orig.pop(f"{i}.f_2.weight") | |
block_four_sd_new[f"resnets.{i}.conv2.bias"] = block_four_sd_orig.pop(f"{i}.f_2.bias") | |
assert len(block_four_sd_orig) == 0 | |
block_four = ResnetDownsampleBlock2D( | |
in_channels=1024, | |
out_channels=1024, | |
temb_channels=1280, | |
num_layers=3, | |
add_downsample=False, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
block_four.load_state_dict(block_four_sd_new) | |
print("MID BLOCK 1") | |
mid_block_one_sd_orig = model.mid.state_dict() | |
mid_block_one_sd_new = {} | |
for i in range(2): | |
mid_block_one_sd_new[f"resnets.{i}.norm1.weight"] = mid_block_one_sd_orig.pop(f"{i}.gn_1.weight") | |
mid_block_one_sd_new[f"resnets.{i}.norm1.bias"] = mid_block_one_sd_orig.pop(f"{i}.gn_1.bias") | |
mid_block_one_sd_new[f"resnets.{i}.conv1.weight"] = mid_block_one_sd_orig.pop(f"{i}.f_1.weight") | |
mid_block_one_sd_new[f"resnets.{i}.conv1.bias"] = mid_block_one_sd_orig.pop(f"{i}.f_1.bias") | |
mid_block_one_sd_new[f"resnets.{i}.time_emb_proj.weight"] = mid_block_one_sd_orig.pop(f"{i}.f_t.weight") | |
mid_block_one_sd_new[f"resnets.{i}.time_emb_proj.bias"] = mid_block_one_sd_orig.pop(f"{i}.f_t.bias") | |
mid_block_one_sd_new[f"resnets.{i}.norm2.weight"] = mid_block_one_sd_orig.pop(f"{i}.gn_2.weight") | |
mid_block_one_sd_new[f"resnets.{i}.norm2.bias"] = mid_block_one_sd_orig.pop(f"{i}.gn_2.bias") | |
mid_block_one_sd_new[f"resnets.{i}.conv2.weight"] = mid_block_one_sd_orig.pop(f"{i}.f_2.weight") | |
mid_block_one_sd_new[f"resnets.{i}.conv2.bias"] = mid_block_one_sd_orig.pop(f"{i}.f_2.bias") | |
assert len(mid_block_one_sd_orig) == 0 | |
mid_block_one = UNetMidBlock2D( | |
in_channels=1024, | |
temb_channels=1280, | |
num_layers=1, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
add_attention=False, | |
) | |
mid_block_one.load_state_dict(mid_block_one_sd_new) | |
print("UP BLOCK ONE") | |
up_block_one_sd_orig = model.up[-1].state_dict() | |
up_block_one_sd_new = {} | |
for i in range(4): | |
up_block_one_sd_new[f"resnets.{i}.norm1.weight"] = up_block_one_sd_orig.pop(f"{i}.gn_1.weight") | |
up_block_one_sd_new[f"resnets.{i}.norm1.bias"] = up_block_one_sd_orig.pop(f"{i}.gn_1.bias") | |
up_block_one_sd_new[f"resnets.{i}.conv1.weight"] = up_block_one_sd_orig.pop(f"{i}.f_1.weight") | |
up_block_one_sd_new[f"resnets.{i}.conv1.bias"] = up_block_one_sd_orig.pop(f"{i}.f_1.bias") | |
up_block_one_sd_new[f"resnets.{i}.time_emb_proj.weight"] = up_block_one_sd_orig.pop(f"{i}.f_t.weight") | |
up_block_one_sd_new[f"resnets.{i}.time_emb_proj.bias"] = up_block_one_sd_orig.pop(f"{i}.f_t.bias") | |
up_block_one_sd_new[f"resnets.{i}.norm2.weight"] = up_block_one_sd_orig.pop(f"{i}.gn_2.weight") | |
up_block_one_sd_new[f"resnets.{i}.norm2.bias"] = up_block_one_sd_orig.pop(f"{i}.gn_2.bias") | |
up_block_one_sd_new[f"resnets.{i}.conv2.weight"] = up_block_one_sd_orig.pop(f"{i}.f_2.weight") | |
up_block_one_sd_new[f"resnets.{i}.conv2.bias"] = up_block_one_sd_orig.pop(f"{i}.f_2.bias") | |
up_block_one_sd_new[f"resnets.{i}.conv_shortcut.weight"] = up_block_one_sd_orig.pop(f"{i}.f_s.weight") | |
up_block_one_sd_new[f"resnets.{i}.conv_shortcut.bias"] = up_block_one_sd_orig.pop(f"{i}.f_s.bias") | |
up_block_one_sd_new["upsamplers.0.norm1.weight"] = up_block_one_sd_orig.pop("4.gn_1.weight") | |
up_block_one_sd_new["upsamplers.0.norm1.bias"] = up_block_one_sd_orig.pop("4.gn_1.bias") | |
up_block_one_sd_new["upsamplers.0.conv1.weight"] = up_block_one_sd_orig.pop("4.f_1.weight") | |
up_block_one_sd_new["upsamplers.0.conv1.bias"] = up_block_one_sd_orig.pop("4.f_1.bias") | |
up_block_one_sd_new["upsamplers.0.time_emb_proj.weight"] = up_block_one_sd_orig.pop("4.f_t.weight") | |
up_block_one_sd_new["upsamplers.0.time_emb_proj.bias"] = up_block_one_sd_orig.pop("4.f_t.bias") | |
up_block_one_sd_new["upsamplers.0.norm2.weight"] = up_block_one_sd_orig.pop("4.gn_2.weight") | |
up_block_one_sd_new["upsamplers.0.norm2.bias"] = up_block_one_sd_orig.pop("4.gn_2.bias") | |
up_block_one_sd_new["upsamplers.0.conv2.weight"] = up_block_one_sd_orig.pop("4.f_2.weight") | |
up_block_one_sd_new["upsamplers.0.conv2.bias"] = up_block_one_sd_orig.pop("4.f_2.bias") | |
assert len(up_block_one_sd_orig) == 0 | |
up_block_one = ResnetUpsampleBlock2D( | |
in_channels=1024, | |
prev_output_channel=1024, | |
out_channels=1024, | |
temb_channels=1280, | |
num_layers=4, | |
add_upsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
up_block_one.load_state_dict(up_block_one_sd_new) | |
print("UP BLOCK TWO") | |
up_block_two_sd_orig = model.up[-2].state_dict() | |
up_block_two_sd_new = {} | |
for i in range(4): | |
up_block_two_sd_new[f"resnets.{i}.norm1.weight"] = up_block_two_sd_orig.pop(f"{i}.gn_1.weight") | |
up_block_two_sd_new[f"resnets.{i}.norm1.bias"] = up_block_two_sd_orig.pop(f"{i}.gn_1.bias") | |
up_block_two_sd_new[f"resnets.{i}.conv1.weight"] = up_block_two_sd_orig.pop(f"{i}.f_1.weight") | |
up_block_two_sd_new[f"resnets.{i}.conv1.bias"] = up_block_two_sd_orig.pop(f"{i}.f_1.bias") | |
up_block_two_sd_new[f"resnets.{i}.time_emb_proj.weight"] = up_block_two_sd_orig.pop(f"{i}.f_t.weight") | |
up_block_two_sd_new[f"resnets.{i}.time_emb_proj.bias"] = up_block_two_sd_orig.pop(f"{i}.f_t.bias") | |
up_block_two_sd_new[f"resnets.{i}.norm2.weight"] = up_block_two_sd_orig.pop(f"{i}.gn_2.weight") | |
up_block_two_sd_new[f"resnets.{i}.norm2.bias"] = up_block_two_sd_orig.pop(f"{i}.gn_2.bias") | |
up_block_two_sd_new[f"resnets.{i}.conv2.weight"] = up_block_two_sd_orig.pop(f"{i}.f_2.weight") | |
up_block_two_sd_new[f"resnets.{i}.conv2.bias"] = up_block_two_sd_orig.pop(f"{i}.f_2.bias") | |
up_block_two_sd_new[f"resnets.{i}.conv_shortcut.weight"] = up_block_two_sd_orig.pop(f"{i}.f_s.weight") | |
up_block_two_sd_new[f"resnets.{i}.conv_shortcut.bias"] = up_block_two_sd_orig.pop(f"{i}.f_s.bias") | |
up_block_two_sd_new["upsamplers.0.norm1.weight"] = up_block_two_sd_orig.pop("4.gn_1.weight") | |
up_block_two_sd_new["upsamplers.0.norm1.bias"] = up_block_two_sd_orig.pop("4.gn_1.bias") | |
up_block_two_sd_new["upsamplers.0.conv1.weight"] = up_block_two_sd_orig.pop("4.f_1.weight") | |
up_block_two_sd_new["upsamplers.0.conv1.bias"] = up_block_two_sd_orig.pop("4.f_1.bias") | |
up_block_two_sd_new["upsamplers.0.time_emb_proj.weight"] = up_block_two_sd_orig.pop("4.f_t.weight") | |
up_block_two_sd_new["upsamplers.0.time_emb_proj.bias"] = up_block_two_sd_orig.pop("4.f_t.bias") | |
up_block_two_sd_new["upsamplers.0.norm2.weight"] = up_block_two_sd_orig.pop("4.gn_2.weight") | |
up_block_two_sd_new["upsamplers.0.norm2.bias"] = up_block_two_sd_orig.pop("4.gn_2.bias") | |
up_block_two_sd_new["upsamplers.0.conv2.weight"] = up_block_two_sd_orig.pop("4.f_2.weight") | |
up_block_two_sd_new["upsamplers.0.conv2.bias"] = up_block_two_sd_orig.pop("4.f_2.bias") | |
assert len(up_block_two_sd_orig) == 0 | |
up_block_two = ResnetUpsampleBlock2D( | |
in_channels=640, | |
prev_output_channel=1024, | |
out_channels=1024, | |
temb_channels=1280, | |
num_layers=4, | |
add_upsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
up_block_two.load_state_dict(up_block_two_sd_new) | |
print("UP BLOCK THREE") | |
up_block_three_sd_orig = model.up[-3].state_dict() | |
up_block_three_sd_new = {} | |
for i in range(4): | |
up_block_three_sd_new[f"resnets.{i}.norm1.weight"] = up_block_three_sd_orig.pop(f"{i}.gn_1.weight") | |
up_block_three_sd_new[f"resnets.{i}.norm1.bias"] = up_block_three_sd_orig.pop(f"{i}.gn_1.bias") | |
up_block_three_sd_new[f"resnets.{i}.conv1.weight"] = up_block_three_sd_orig.pop(f"{i}.f_1.weight") | |
up_block_three_sd_new[f"resnets.{i}.conv1.bias"] = up_block_three_sd_orig.pop(f"{i}.f_1.bias") | |
up_block_three_sd_new[f"resnets.{i}.time_emb_proj.weight"] = up_block_three_sd_orig.pop(f"{i}.f_t.weight") | |
up_block_three_sd_new[f"resnets.{i}.time_emb_proj.bias"] = up_block_three_sd_orig.pop(f"{i}.f_t.bias") | |
up_block_three_sd_new[f"resnets.{i}.norm2.weight"] = up_block_three_sd_orig.pop(f"{i}.gn_2.weight") | |
up_block_three_sd_new[f"resnets.{i}.norm2.bias"] = up_block_three_sd_orig.pop(f"{i}.gn_2.bias") | |
up_block_three_sd_new[f"resnets.{i}.conv2.weight"] = up_block_three_sd_orig.pop(f"{i}.f_2.weight") | |
up_block_three_sd_new[f"resnets.{i}.conv2.bias"] = up_block_three_sd_orig.pop(f"{i}.f_2.bias") | |
up_block_three_sd_new[f"resnets.{i}.conv_shortcut.weight"] = up_block_three_sd_orig.pop(f"{i}.f_s.weight") | |
up_block_three_sd_new[f"resnets.{i}.conv_shortcut.bias"] = up_block_three_sd_orig.pop(f"{i}.f_s.bias") | |
up_block_three_sd_new["upsamplers.0.norm1.weight"] = up_block_three_sd_orig.pop("4.gn_1.weight") | |
up_block_three_sd_new["upsamplers.0.norm1.bias"] = up_block_three_sd_orig.pop("4.gn_1.bias") | |
up_block_three_sd_new["upsamplers.0.conv1.weight"] = up_block_three_sd_orig.pop("4.f_1.weight") | |
up_block_three_sd_new["upsamplers.0.conv1.bias"] = up_block_three_sd_orig.pop("4.f_1.bias") | |
up_block_three_sd_new["upsamplers.0.time_emb_proj.weight"] = up_block_three_sd_orig.pop("4.f_t.weight") | |
up_block_three_sd_new["upsamplers.0.time_emb_proj.bias"] = up_block_three_sd_orig.pop("4.f_t.bias") | |
up_block_three_sd_new["upsamplers.0.norm2.weight"] = up_block_three_sd_orig.pop("4.gn_2.weight") | |
up_block_three_sd_new["upsamplers.0.norm2.bias"] = up_block_three_sd_orig.pop("4.gn_2.bias") | |
up_block_three_sd_new["upsamplers.0.conv2.weight"] = up_block_three_sd_orig.pop("4.f_2.weight") | |
up_block_three_sd_new["upsamplers.0.conv2.bias"] = up_block_three_sd_orig.pop("4.f_2.bias") | |
assert len(up_block_three_sd_orig) == 0 | |
up_block_three = ResnetUpsampleBlock2D( | |
in_channels=320, | |
prev_output_channel=1024, | |
out_channels=640, | |
temb_channels=1280, | |
num_layers=4, | |
add_upsample=True, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
up_block_three.load_state_dict(up_block_three_sd_new) | |
print("UP BLOCK FOUR") | |
up_block_four_sd_orig = model.up[-4].state_dict() | |
up_block_four_sd_new = {} | |
for i in range(4): | |
up_block_four_sd_new[f"resnets.{i}.norm1.weight"] = up_block_four_sd_orig.pop(f"{i}.gn_1.weight") | |
up_block_four_sd_new[f"resnets.{i}.norm1.bias"] = up_block_four_sd_orig.pop(f"{i}.gn_1.bias") | |
up_block_four_sd_new[f"resnets.{i}.conv1.weight"] = up_block_four_sd_orig.pop(f"{i}.f_1.weight") | |
up_block_four_sd_new[f"resnets.{i}.conv1.bias"] = up_block_four_sd_orig.pop(f"{i}.f_1.bias") | |
up_block_four_sd_new[f"resnets.{i}.time_emb_proj.weight"] = up_block_four_sd_orig.pop(f"{i}.f_t.weight") | |
up_block_four_sd_new[f"resnets.{i}.time_emb_proj.bias"] = up_block_four_sd_orig.pop(f"{i}.f_t.bias") | |
up_block_four_sd_new[f"resnets.{i}.norm2.weight"] = up_block_four_sd_orig.pop(f"{i}.gn_2.weight") | |
up_block_four_sd_new[f"resnets.{i}.norm2.bias"] = up_block_four_sd_orig.pop(f"{i}.gn_2.bias") | |
up_block_four_sd_new[f"resnets.{i}.conv2.weight"] = up_block_four_sd_orig.pop(f"{i}.f_2.weight") | |
up_block_four_sd_new[f"resnets.{i}.conv2.bias"] = up_block_four_sd_orig.pop(f"{i}.f_2.bias") | |
up_block_four_sd_new[f"resnets.{i}.conv_shortcut.weight"] = up_block_four_sd_orig.pop(f"{i}.f_s.weight") | |
up_block_four_sd_new[f"resnets.{i}.conv_shortcut.bias"] = up_block_four_sd_orig.pop(f"{i}.f_s.bias") | |
assert len(up_block_four_sd_orig) == 0 | |
up_block_four = ResnetUpsampleBlock2D( | |
in_channels=320, | |
prev_output_channel=640, | |
out_channels=320, | |
temb_channels=1280, | |
num_layers=4, | |
add_upsample=False, | |
resnet_time_scale_shift="scale_shift", | |
resnet_eps=1e-5, | |
) | |
up_block_four.load_state_dict(up_block_four_sd_new) | |
print("initial projection (conv_in)") | |
conv_in_sd_orig = model.embed_image.state_dict() | |
conv_in_sd_new = {} | |
conv_in_sd_new["weight"] = conv_in_sd_orig.pop("f.weight") | |
conv_in_sd_new["bias"] = conv_in_sd_orig.pop("f.bias") | |
assert len(conv_in_sd_orig) == 0 | |
block_out_channels = [320, 640, 1024, 1024] | |
in_channels = 7 | |
conv_in_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) | |
conv_in.load_state_dict(conv_in_sd_new) | |
print("out projection (conv_out) (conv_norm_out)") | |
out_channels = 6 | |
norm_num_groups = 32 | |
norm_eps = 1e-5 | |
act_fn = "silu" | |
conv_out_kernel = 3 | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
# uses torch.functional in orig | |
# conv_act = get_activation(act_fn) | |
conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) | |
conv_norm_out.load_state_dict(model.output.gn.state_dict()) | |
conv_out.load_state_dict(model.output.f.state_dict()) | |
print("timestep projection (time_proj) (time_embedding)") | |
f1_sd = model.embed_time.f_1.state_dict() | |
f2_sd = model.embed_time.f_2.state_dict() | |
time_embedding_sd = { | |
"linear_1.weight": f1_sd.pop("weight"), | |
"linear_1.bias": f1_sd.pop("bias"), | |
"linear_2.weight": f2_sd.pop("weight"), | |
"linear_2.bias": f2_sd.pop("bias"), | |
} | |
assert len(f1_sd) == 0 | |
assert len(f2_sd) == 0 | |
time_embedding_type = "learned" | |
num_train_timesteps = 1024 | |
time_embedding_dim = 1280 | |
time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0]) | |
timestep_input_dim = block_out_channels[0] | |
time_embedding = TimestepEmbedding(timestep_input_dim, time_embedding_dim) | |
time_proj.load_state_dict(model.embed_time.emb.state_dict()) | |
time_embedding.load_state_dict(time_embedding_sd) | |
print("CONVERT") | |
time_embedding.to("cuda") | |
time_proj.to("cuda") | |
conv_in.to("cuda") | |
block_one.to("cuda") | |
block_two.to("cuda") | |
block_three.to("cuda") | |
block_four.to("cuda") | |
mid_block_one.to("cuda") | |
up_block_one.to("cuda") | |
up_block_two.to("cuda") | |
up_block_three.to("cuda") | |
up_block_four.to("cuda") | |
conv_norm_out.to("cuda") | |
conv_out.to("cuda") | |
model.time_proj = time_proj | |
model.time_embedding = time_embedding | |
model.embed_image = conv_in | |
model.down[0] = block_one | |
model.down[1] = block_two | |
model.down[2] = block_three | |
model.down[3] = block_four | |
model.mid = mid_block_one | |
model.up[-1] = up_block_one | |
model.up[-2] = up_block_two | |
model.up[-3] = up_block_three | |
model.up[-4] = up_block_four | |
model.output.gn = conv_norm_out | |
model.output.f = conv_out | |
model.converted = True | |
sample_consistency_new = decoder_consistency(latent, generator=torch.Generator("cpu").manual_seed(0)) | |
save_image(sample_consistency_new, "con_new.png") | |
assert (sample_consistency_orig == sample_consistency_new).all() | |
print("making unet") | |
unet = UNet2DModel( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
down_block_types=( | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
"ResnetDownsampleBlock2D", | |
), | |
up_block_types=( | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
"ResnetUpsampleBlock2D", | |
), | |
block_out_channels=block_out_channels, | |
layers_per_block=3, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
resnet_time_scale_shift="scale_shift", | |
time_embedding_type="learned", | |
num_train_timesteps=num_train_timesteps, | |
add_attention=False, | |
) | |
unet_state_dict = {} | |
def add_state_dict(prefix, mod): | |
for k, v in mod.state_dict().items(): | |
unet_state_dict[f"{prefix}.{k}"] = v | |
add_state_dict("conv_in", conv_in) | |
add_state_dict("time_proj", time_proj) | |
add_state_dict("time_embedding", time_embedding) | |
add_state_dict("down_blocks.0", block_one) | |
add_state_dict("down_blocks.1", block_two) | |
add_state_dict("down_blocks.2", block_three) | |
add_state_dict("down_blocks.3", block_four) | |
add_state_dict("mid_block", mid_block_one) | |
add_state_dict("up_blocks.0", up_block_one) | |
add_state_dict("up_blocks.1", up_block_two) | |
add_state_dict("up_blocks.2", up_block_three) | |
add_state_dict("up_blocks.3", up_block_four) | |
add_state_dict("conv_norm_out", conv_norm_out) | |
add_state_dict("conv_out", conv_out) | |
unet.load_state_dict(unet_state_dict) | |
print("running with diffusers unet") | |
unet.to("cuda") | |
decoder_consistency.ckpt = unet | |
sample_consistency_new_2 = decoder_consistency(latent, generator=torch.Generator("cpu").manual_seed(0)) | |
save_image(sample_consistency_new_2, "con_new_2.png") | |
assert (sample_consistency_orig == sample_consistency_new_2).all() | |
print("running with diffusers model") | |
Encoder.old_constructor = Encoder.__init__ | |
def new_constructor(self, **kwargs): | |
self.old_constructor(**kwargs) | |
self.constructor_arguments = kwargs | |
Encoder.__init__ = new_constructor | |
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae") | |
consistency_vae = ConsistencyDecoderVAE( | |
encoder_args=vae.encoder.constructor_arguments, | |
decoder_args=unet.config, | |
scaling_factor=vae.config.scaling_factor, | |
block_out_channels=vae.config.block_out_channels, | |
latent_channels=vae.config.latent_channels, | |
) | |
consistency_vae.encoder.load_state_dict(vae.encoder.state_dict()) | |
consistency_vae.quant_conv.load_state_dict(vae.quant_conv.state_dict()) | |
consistency_vae.decoder_unet.load_state_dict(unet.state_dict()) | |
consistency_vae.to(dtype=torch.float16, device="cuda") | |
sample_consistency_new_3 = consistency_vae.decode( | |
0.18215 * latent, generator=torch.Generator("cpu").manual_seed(0) | |
).sample | |
print("max difference") | |
print((sample_consistency_orig - sample_consistency_new_3).abs().max()) | |
print("total difference") | |
print((sample_consistency_orig - sample_consistency_new_3).abs().sum()) | |
# assert (sample_consistency_orig == sample_consistency_new_3).all() | |
print("running with diffusers pipeline") | |
pipe = DiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", vae=consistency_vae, torch_dtype=torch.float16 | |
) | |
pipe.to("cuda") | |
pipe("horse", generator=torch.Generator("cpu").manual_seed(0)).images[0].save("horse.png") | |
if args.save_pretrained is not None: | |
consistency_vae.save_pretrained(args.save_pretrained) | |