Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import re | |
import torch | |
import yaml | |
from transformers import ( | |
CLIPProcessor, | |
CLIPTextModel, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
StableDiffusionGLIGENPipeline, | |
StableDiffusionGLIGENTextImagePipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( | |
assign_to_checkpoint, | |
conv_attn_to_linear, | |
protected, | |
renew_attention_paths, | |
renew_resnet_paths, | |
renew_vae_attention_paths, | |
renew_vae_resnet_paths, | |
shave_segments, | |
textenc_conversion_map, | |
textenc_pattern, | |
) | |
def convert_open_clip_checkpoint(checkpoint): | |
checkpoint = checkpoint["text_encoder"] | |
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
if "cond_stage_model.model.text_projection" in checkpoint: | |
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) | |
else: | |
d_model = 1024 | |
for key in keys: | |
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer | |
continue | |
if key in textenc_conversion_map: | |
text_model_dict[textenc_conversion_map[key]] = checkpoint[key] | |
# if key.startswith("cond_stage_model.model.transformer."): | |
new_key = key[len("transformer.") :] | |
if new_key.endswith(".in_proj_weight"): | |
new_key = new_key[: -len(".in_proj_weight")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] | |
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] | |
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] | |
elif new_key.endswith(".in_proj_bias"): | |
new_key = new_key[: -len(".in_proj_bias")] | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] | |
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] | |
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] | |
else: | |
if key != "transformer.text_model.embeddings.position_ids": | |
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) | |
text_model_dict[new_key] = checkpoint[key] | |
if key == "transformer.text_model.embeddings.token_embedding.weight": | |
text_model_dict["text_model.embeddings.token_embedding.weight"] = checkpoint[key] | |
text_model_dict.pop("text_model.embeddings.transformer.text_model.embeddings.token_embedding.weight") | |
text_model.load_state_dict(text_model_dict) | |
return text_model | |
def convert_gligen_vae_checkpoint(checkpoint, config): | |
checkpoint = checkpoint["autoencoder"] | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for key in new_checkpoint.keys(): | |
if "encoder.mid_block.attentions.0" in key or "decoder.mid_block.attentions.0" in key: | |
if "query" in key: | |
new_checkpoint[key.replace("query", "to_q")] = new_checkpoint.pop(key) | |
if "value" in key: | |
new_checkpoint[key.replace("value", "to_v")] = new_checkpoint.pop(key) | |
if "key" in key: | |
new_checkpoint[key.replace("key", "to_k")] = new_checkpoint.pop(key) | |
if "proj_attn" in key: | |
new_checkpoint[key.replace("proj_attn", "to_out.0")] = new_checkpoint.pop(key) | |
return new_checkpoint | |
def convert_gligen_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): | |
unet_state_dict = {} | |
checkpoint = checkpoint["model"] | |
keys = list(checkpoint.keys()) | |
unet_key = "model.diffusion_model." | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
print(f"Checkpoint {path} has bot EMA and non-EMA weights.") | |
print( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
print( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
resnet_0_paths = renew_resnet_paths(resnets) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
for key in keys: | |
if "position_net" in key: | |
new_checkpoint[key] = unet_state_dict[key] | |
return new_checkpoint | |
def create_vae_config(original_config, image_size: int): | |
vae_params = original_config["autoencoder"]["params"]["ddconfig"] | |
_ = original_config["autoencoder"]["params"]["embed_dim"] | |
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params["in_channels"], | |
"out_channels": vae_params["out_ch"], | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params["z_channels"], | |
"layers_per_block": vae_params["num_res_blocks"], | |
} | |
return config | |
def create_unet_config(original_config, image_size: int, attention_type): | |
unet_params = original_config["model"]["params"] | |
vae_params = original_config["autoencoder"]["params"]["ddconfig"] | |
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) | |
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None | |
use_linear_projection = ( | |
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False | |
) | |
if use_linear_projection: | |
if head_dim is None: | |
head_dim = [5, 10, 20, 20] | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": unet_params["in_channels"], | |
"down_block_types": tuple(down_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params["num_res_blocks"], | |
"cross_attention_dim": unet_params["context_dim"], | |
"attention_head_dim": head_dim, | |
"use_linear_projection": use_linear_projection, | |
"attention_type": attention_type, | |
} | |
return config | |
def convert_gligen_to_diffusers( | |
checkpoint_path: str, | |
original_config_file: str, | |
attention_type: str, | |
image_size: int = 512, | |
extract_ema: bool = False, | |
num_in_channels: int = None, | |
device: str = None, | |
): | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
if "global_step" in checkpoint: | |
checkpoint["global_step"] | |
else: | |
print("global_step key not found in model") | |
original_config = yaml.safe_load(original_config_file) | |
if num_in_channels is not None: | |
original_config["model"]["params"]["in_channels"] = num_in_channels | |
num_train_timesteps = original_config["diffusion"]["params"]["timesteps"] | |
beta_start = original_config["diffusion"]["params"]["linear_start"] | |
beta_end = original_config["diffusion"]["params"]["linear_end"] | |
scheduler = DDIMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
steps_offset=1, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
prediction_type="epsilon", | |
) | |
# Convert the UNet2DConditionalModel model | |
unet_config = create_unet_config(original_config, image_size, attention_type) | |
unet = UNet2DConditionModel(**unet_config) | |
converted_unet_checkpoint = convert_gligen_unet_checkpoint( | |
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema | |
) | |
unet.load_state_dict(converted_unet_checkpoint) | |
# Convert the VAE model | |
vae_config = create_vae_config(original_config, image_size) | |
converted_vae_checkpoint = convert_gligen_vae_checkpoint(checkpoint, vae_config) | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(converted_vae_checkpoint) | |
# Convert the text model | |
text_encoder = convert_open_clip_checkpoint(checkpoint) | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
if attention_type == "gated-text-image": | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
pipe = StableDiffusionGLIGENTextImagePipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
image_encoder=image_encoder, | |
processor=processor, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
) | |
elif attention_type == "gated": | |
pipe = StableDiffusionGLIGENPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
) | |
return pipe | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
required=True, | |
help="The YAML config file corresponding to the gligen architecture.", | |
) | |
parser.add_argument( | |
"--num_in_channels", | |
default=None, | |
type=int, | |
help="The number of input channels. If `None` number of input channels will be automatically inferred.", | |
) | |
parser.add_argument( | |
"--extract_ema", | |
action="store_true", | |
help=( | |
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
), | |
) | |
parser.add_argument( | |
"--attention_type", | |
default=None, | |
type=str, | |
required=True, | |
help="Type of attention ex: gated or gated-text-image", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument("--device", type=str, help="Device to use.") | |
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | |
args = parser.parse_args() | |
pipe = convert_gligen_to_diffusers( | |
checkpoint_path=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
attention_type=args.attention_type, | |
extract_ema=args.extract_ema, | |
num_in_channels=args.num_in_channels, | |
device=args.device, | |
) | |
if args.half: | |
pipe.to(dtype=torch.float16) | |
pipe.save_pretrained(args.dump_path) | |