Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Conversion script for the T2I-Adapter checkpoints. | |
""" | |
import argparse | |
import torch | |
from diffusers import T2IAdapter | |
def convert_adapter(src_state, in_channels): | |
original_body_length = max([int(x.split(".")[1]) for x in src_state.keys() if "body." in x]) + 1 | |
assert original_body_length == 8 | |
# (0, 1) -> channels 1 | |
assert src_state["body.0.block1.weight"].shape == (320, 320, 3, 3) | |
# (2, 3) -> channels 2 | |
assert src_state["body.2.in_conv.weight"].shape == (640, 320, 1, 1) | |
# (4, 5) -> channels 3 | |
assert src_state["body.4.in_conv.weight"].shape == (1280, 640, 1, 1) | |
# (6, 7) -> channels 4 | |
assert src_state["body.6.block1.weight"].shape == (1280, 1280, 3, 3) | |
res_state = { | |
"adapter.conv_in.weight": src_state.pop("conv_in.weight"), | |
"adapter.conv_in.bias": src_state.pop("conv_in.bias"), | |
# 0.resnets.0 | |
"adapter.body.0.resnets.0.block1.weight": src_state.pop("body.0.block1.weight"), | |
"adapter.body.0.resnets.0.block1.bias": src_state.pop("body.0.block1.bias"), | |
"adapter.body.0.resnets.0.block2.weight": src_state.pop("body.0.block2.weight"), | |
"adapter.body.0.resnets.0.block2.bias": src_state.pop("body.0.block2.bias"), | |
# 0.resnets.1 | |
"adapter.body.0.resnets.1.block1.weight": src_state.pop("body.1.block1.weight"), | |
"adapter.body.0.resnets.1.block1.bias": src_state.pop("body.1.block1.bias"), | |
"adapter.body.0.resnets.1.block2.weight": src_state.pop("body.1.block2.weight"), | |
"adapter.body.0.resnets.1.block2.bias": src_state.pop("body.1.block2.bias"), | |
# 1 | |
"adapter.body.1.in_conv.weight": src_state.pop("body.2.in_conv.weight"), | |
"adapter.body.1.in_conv.bias": src_state.pop("body.2.in_conv.bias"), | |
# 1.resnets.0 | |
"adapter.body.1.resnets.0.block1.weight": src_state.pop("body.2.block1.weight"), | |
"adapter.body.1.resnets.0.block1.bias": src_state.pop("body.2.block1.bias"), | |
"adapter.body.1.resnets.0.block2.weight": src_state.pop("body.2.block2.weight"), | |
"adapter.body.1.resnets.0.block2.bias": src_state.pop("body.2.block2.bias"), | |
# 1.resnets.1 | |
"adapter.body.1.resnets.1.block1.weight": src_state.pop("body.3.block1.weight"), | |
"adapter.body.1.resnets.1.block1.bias": src_state.pop("body.3.block1.bias"), | |
"adapter.body.1.resnets.1.block2.weight": src_state.pop("body.3.block2.weight"), | |
"adapter.body.1.resnets.1.block2.bias": src_state.pop("body.3.block2.bias"), | |
# 2 | |
"adapter.body.2.in_conv.weight": src_state.pop("body.4.in_conv.weight"), | |
"adapter.body.2.in_conv.bias": src_state.pop("body.4.in_conv.bias"), | |
# 2.resnets.0 | |
"adapter.body.2.resnets.0.block1.weight": src_state.pop("body.4.block1.weight"), | |
"adapter.body.2.resnets.0.block1.bias": src_state.pop("body.4.block1.bias"), | |
"adapter.body.2.resnets.0.block2.weight": src_state.pop("body.4.block2.weight"), | |
"adapter.body.2.resnets.0.block2.bias": src_state.pop("body.4.block2.bias"), | |
# 2.resnets.1 | |
"adapter.body.2.resnets.1.block1.weight": src_state.pop("body.5.block1.weight"), | |
"adapter.body.2.resnets.1.block1.bias": src_state.pop("body.5.block1.bias"), | |
"adapter.body.2.resnets.1.block2.weight": src_state.pop("body.5.block2.weight"), | |
"adapter.body.2.resnets.1.block2.bias": src_state.pop("body.5.block2.bias"), | |
# 3.resnets.0 | |
"adapter.body.3.resnets.0.block1.weight": src_state.pop("body.6.block1.weight"), | |
"adapter.body.3.resnets.0.block1.bias": src_state.pop("body.6.block1.bias"), | |
"adapter.body.3.resnets.0.block2.weight": src_state.pop("body.6.block2.weight"), | |
"adapter.body.3.resnets.0.block2.bias": src_state.pop("body.6.block2.bias"), | |
# 3.resnets.1 | |
"adapter.body.3.resnets.1.block1.weight": src_state.pop("body.7.block1.weight"), | |
"adapter.body.3.resnets.1.block1.bias": src_state.pop("body.7.block1.bias"), | |
"adapter.body.3.resnets.1.block2.weight": src_state.pop("body.7.block2.weight"), | |
"adapter.body.3.resnets.1.block2.bias": src_state.pop("body.7.block2.bias"), | |
} | |
assert len(src_state) == 0 | |
adapter = T2IAdapter(in_channels=in_channels, adapter_type="full_adapter") | |
adapter.load_state_dict(res_state) | |
return adapter | |
def convert_light_adapter(src_state): | |
original_body_length = max([int(x.split(".")[1]) for x in src_state.keys() if "body." in x]) + 1 | |
assert original_body_length == 4 | |
res_state = { | |
# body.0.in_conv | |
"adapter.body.0.in_conv.weight": src_state.pop("body.0.in_conv.weight"), | |
"adapter.body.0.in_conv.bias": src_state.pop("body.0.in_conv.bias"), | |
# body.0.resnets.0 | |
"adapter.body.0.resnets.0.block1.weight": src_state.pop("body.0.body.0.block1.weight"), | |
"adapter.body.0.resnets.0.block1.bias": src_state.pop("body.0.body.0.block1.bias"), | |
"adapter.body.0.resnets.0.block2.weight": src_state.pop("body.0.body.0.block2.weight"), | |
"adapter.body.0.resnets.0.block2.bias": src_state.pop("body.0.body.0.block2.bias"), | |
# body.0.resnets.1 | |
"adapter.body.0.resnets.1.block1.weight": src_state.pop("body.0.body.1.block1.weight"), | |
"adapter.body.0.resnets.1.block1.bias": src_state.pop("body.0.body.1.block1.bias"), | |
"adapter.body.0.resnets.1.block2.weight": src_state.pop("body.0.body.1.block2.weight"), | |
"adapter.body.0.resnets.1.block2.bias": src_state.pop("body.0.body.1.block2.bias"), | |
# body.0.resnets.2 | |
"adapter.body.0.resnets.2.block1.weight": src_state.pop("body.0.body.2.block1.weight"), | |
"adapter.body.0.resnets.2.block1.bias": src_state.pop("body.0.body.2.block1.bias"), | |
"adapter.body.0.resnets.2.block2.weight": src_state.pop("body.0.body.2.block2.weight"), | |
"adapter.body.0.resnets.2.block2.bias": src_state.pop("body.0.body.2.block2.bias"), | |
# body.0.resnets.3 | |
"adapter.body.0.resnets.3.block1.weight": src_state.pop("body.0.body.3.block1.weight"), | |
"adapter.body.0.resnets.3.block1.bias": src_state.pop("body.0.body.3.block1.bias"), | |
"adapter.body.0.resnets.3.block2.weight": src_state.pop("body.0.body.3.block2.weight"), | |
"adapter.body.0.resnets.3.block2.bias": src_state.pop("body.0.body.3.block2.bias"), | |
# body.0.out_conv | |
"adapter.body.0.out_conv.weight": src_state.pop("body.0.out_conv.weight"), | |
"adapter.body.0.out_conv.bias": src_state.pop("body.0.out_conv.bias"), | |
# body.1.in_conv | |
"adapter.body.1.in_conv.weight": src_state.pop("body.1.in_conv.weight"), | |
"adapter.body.1.in_conv.bias": src_state.pop("body.1.in_conv.bias"), | |
# body.1.resnets.0 | |
"adapter.body.1.resnets.0.block1.weight": src_state.pop("body.1.body.0.block1.weight"), | |
"adapter.body.1.resnets.0.block1.bias": src_state.pop("body.1.body.0.block1.bias"), | |
"adapter.body.1.resnets.0.block2.weight": src_state.pop("body.1.body.0.block2.weight"), | |
"adapter.body.1.resnets.0.block2.bias": src_state.pop("body.1.body.0.block2.bias"), | |
# body.1.resnets.1 | |
"adapter.body.1.resnets.1.block1.weight": src_state.pop("body.1.body.1.block1.weight"), | |
"adapter.body.1.resnets.1.block1.bias": src_state.pop("body.1.body.1.block1.bias"), | |
"adapter.body.1.resnets.1.block2.weight": src_state.pop("body.1.body.1.block2.weight"), | |
"adapter.body.1.resnets.1.block2.bias": src_state.pop("body.1.body.1.block2.bias"), | |
# body.1.body.2 | |
"adapter.body.1.resnets.2.block1.weight": src_state.pop("body.1.body.2.block1.weight"), | |
"adapter.body.1.resnets.2.block1.bias": src_state.pop("body.1.body.2.block1.bias"), | |
"adapter.body.1.resnets.2.block2.weight": src_state.pop("body.1.body.2.block2.weight"), | |
"adapter.body.1.resnets.2.block2.bias": src_state.pop("body.1.body.2.block2.bias"), | |
# body.1.body.3 | |
"adapter.body.1.resnets.3.block1.weight": src_state.pop("body.1.body.3.block1.weight"), | |
"adapter.body.1.resnets.3.block1.bias": src_state.pop("body.1.body.3.block1.bias"), | |
"adapter.body.1.resnets.3.block2.weight": src_state.pop("body.1.body.3.block2.weight"), | |
"adapter.body.1.resnets.3.block2.bias": src_state.pop("body.1.body.3.block2.bias"), | |
# body.1.out_conv | |
"adapter.body.1.out_conv.weight": src_state.pop("body.1.out_conv.weight"), | |
"adapter.body.1.out_conv.bias": src_state.pop("body.1.out_conv.bias"), | |
# body.2.in_conv | |
"adapter.body.2.in_conv.weight": src_state.pop("body.2.in_conv.weight"), | |
"adapter.body.2.in_conv.bias": src_state.pop("body.2.in_conv.bias"), | |
# body.2.body.0 | |
"adapter.body.2.resnets.0.block1.weight": src_state.pop("body.2.body.0.block1.weight"), | |
"adapter.body.2.resnets.0.block1.bias": src_state.pop("body.2.body.0.block1.bias"), | |
"adapter.body.2.resnets.0.block2.weight": src_state.pop("body.2.body.0.block2.weight"), | |
"adapter.body.2.resnets.0.block2.bias": src_state.pop("body.2.body.0.block2.bias"), | |
# body.2.body.1 | |
"adapter.body.2.resnets.1.block1.weight": src_state.pop("body.2.body.1.block1.weight"), | |
"adapter.body.2.resnets.1.block1.bias": src_state.pop("body.2.body.1.block1.bias"), | |
"adapter.body.2.resnets.1.block2.weight": src_state.pop("body.2.body.1.block2.weight"), | |
"adapter.body.2.resnets.1.block2.bias": src_state.pop("body.2.body.1.block2.bias"), | |
# body.2.body.2 | |
"adapter.body.2.resnets.2.block1.weight": src_state.pop("body.2.body.2.block1.weight"), | |
"adapter.body.2.resnets.2.block1.bias": src_state.pop("body.2.body.2.block1.bias"), | |
"adapter.body.2.resnets.2.block2.weight": src_state.pop("body.2.body.2.block2.weight"), | |
"adapter.body.2.resnets.2.block2.bias": src_state.pop("body.2.body.2.block2.bias"), | |
# body.2.body.3 | |
"adapter.body.2.resnets.3.block1.weight": src_state.pop("body.2.body.3.block1.weight"), | |
"adapter.body.2.resnets.3.block1.bias": src_state.pop("body.2.body.3.block1.bias"), | |
"adapter.body.2.resnets.3.block2.weight": src_state.pop("body.2.body.3.block2.weight"), | |
"adapter.body.2.resnets.3.block2.bias": src_state.pop("body.2.body.3.block2.bias"), | |
# body.2.out_conv | |
"adapter.body.2.out_conv.weight": src_state.pop("body.2.out_conv.weight"), | |
"adapter.body.2.out_conv.bias": src_state.pop("body.2.out_conv.bias"), | |
# body.3.in_conv | |
"adapter.body.3.in_conv.weight": src_state.pop("body.3.in_conv.weight"), | |
"adapter.body.3.in_conv.bias": src_state.pop("body.3.in_conv.bias"), | |
# body.3.body.0 | |
"adapter.body.3.resnets.0.block1.weight": src_state.pop("body.3.body.0.block1.weight"), | |
"adapter.body.3.resnets.0.block1.bias": src_state.pop("body.3.body.0.block1.bias"), | |
"adapter.body.3.resnets.0.block2.weight": src_state.pop("body.3.body.0.block2.weight"), | |
"adapter.body.3.resnets.0.block2.bias": src_state.pop("body.3.body.0.block2.bias"), | |
# body.3.body.1 | |
"adapter.body.3.resnets.1.block1.weight": src_state.pop("body.3.body.1.block1.weight"), | |
"adapter.body.3.resnets.1.block1.bias": src_state.pop("body.3.body.1.block1.bias"), | |
"adapter.body.3.resnets.1.block2.weight": src_state.pop("body.3.body.1.block2.weight"), | |
"adapter.body.3.resnets.1.block2.bias": src_state.pop("body.3.body.1.block2.bias"), | |
# body.3.body.2 | |
"adapter.body.3.resnets.2.block1.weight": src_state.pop("body.3.body.2.block1.weight"), | |
"adapter.body.3.resnets.2.block1.bias": src_state.pop("body.3.body.2.block1.bias"), | |
"adapter.body.3.resnets.2.block2.weight": src_state.pop("body.3.body.2.block2.weight"), | |
"adapter.body.3.resnets.2.block2.bias": src_state.pop("body.3.body.2.block2.bias"), | |
# body.3.body.3 | |
"adapter.body.3.resnets.3.block1.weight": src_state.pop("body.3.body.3.block1.weight"), | |
"adapter.body.3.resnets.3.block1.bias": src_state.pop("body.3.body.3.block1.bias"), | |
"adapter.body.3.resnets.3.block2.weight": src_state.pop("body.3.body.3.block2.weight"), | |
"adapter.body.3.resnets.3.block2.bias": src_state.pop("body.3.body.3.block2.bias"), | |
# body.3.out_conv | |
"adapter.body.3.out_conv.weight": src_state.pop("body.3.out_conv.weight"), | |
"adapter.body.3.out_conv.bias": src_state.pop("body.3.out_conv.bias"), | |
} | |
assert len(src_state) == 0 | |
adapter = T2IAdapter(in_channels=3, channels=[320, 640, 1280], num_res_blocks=4, adapter_type="light_adapter") | |
adapter.load_state_dict(res_state) | |
return adapter | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--output_path", default=None, type=str, required=True, help="Path to the store the result checkpoint." | |
) | |
parser.add_argument( | |
"--is_adapter_light", | |
action="store_true", | |
help="Is checkpoint come from Adapter-Light architecture. ex: color-adapter", | |
) | |
parser.add_argument("--in_channels", required=False, type=int, help="Input channels for non-light adapter") | |
args = parser.parse_args() | |
src_state = torch.load(args.checkpoint_path) | |
if args.is_adapter_light: | |
adapter = convert_light_adapter(src_state) | |
else: | |
if args.in_channels is None: | |
raise ValueError("set `--in_channels=<n>`") | |
adapter = convert_adapter(src_state, args.in_channels) | |
adapter.save_pretrained(args.output_path) | |