Spaces:
Running
on
Zero
Running
on
Zero
# Convert the original UniDiffuser checkpoints into diffusers equivalents. | |
import argparse | |
from argparse import Namespace | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
GPT2Tokenizer, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
DPMSolverMultistepScheduler, | |
UniDiffuserModel, | |
UniDiffuserPipeline, | |
UniDiffuserTextDecoder, | |
) | |
SCHEDULER_CONFIG = Namespace( | |
**{ | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"beta_schedule": "scaled_linear", | |
"solver_order": 3, | |
} | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "to_q.weight") | |
new_item = new_item.replace("q.bias", "to_q.bias") | |
new_item = new_item.replace("k.weight", "to_k.weight") | |
new_item = new_item.replace("k.bias", "to_k.bias") | |
new_item = new_item.replace("v.weight", "to_v.weight") | |
new_item = new_item.replace("v.bias", "to_v.bias") | |
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
# Modified from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint | |
# config.num_head_channels => num_head_channels | |
def assign_to_checkpoint( | |
paths, | |
checkpoint, | |
old_checkpoint, | |
attention_paths_to_split=None, | |
additional_replacements=None, | |
num_head_channels=1, | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // num_head_channels // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path) | |
shape = old_checkpoint[path["old"]].shape | |
if is_attn_weight and len(shape) == 3: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
elif is_attn_weight and len(shape) == 4: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def create_vae_diffusers_config(config_type): | |
# Hardcoded for now | |
if args.config_type == "test": | |
vae_config = create_vae_diffusers_config_test() | |
elif args.config_type == "big": | |
vae_config = create_vae_diffusers_config_big() | |
else: | |
raise NotImplementedError( | |
f"Config type {config_type} is not implemented, currently only config types" | |
" 'test' and 'big' are available." | |
) | |
return vae_config | |
def create_unidiffuser_unet_config(config_type, version): | |
# Hardcoded for now | |
if args.config_type == "test": | |
unet_config = create_unidiffuser_unet_config_test() | |
elif args.config_type == "big": | |
unet_config = create_unidiffuser_unet_config_big() | |
else: | |
raise NotImplementedError( | |
f"Config type {config_type} is not implemented, currently only config types" | |
" 'test' and 'big' are available." | |
) | |
# Unidiffuser-v1 uses data type embeddings | |
if version == 1: | |
unet_config["use_data_type_embedding"] = True | |
return unet_config | |
def create_text_decoder_config(config_type): | |
# Hardcoded for now | |
if args.config_type == "test": | |
text_decoder_config = create_text_decoder_config_test() | |
elif args.config_type == "big": | |
text_decoder_config = create_text_decoder_config_big() | |
else: | |
raise NotImplementedError( | |
f"Config type {config_type} is not implemented, currently only config types" | |
" 'test' and 'big' are available." | |
) | |
return text_decoder_config | |
# Hardcoded configs for test versions of the UniDiffuser models, corresponding to those in the fast default tests. | |
def create_vae_diffusers_config_test(): | |
vae_config = { | |
"sample_size": 32, | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
"block_out_channels": [32, 64], | |
"latent_channels": 4, | |
"layers_per_block": 1, | |
} | |
return vae_config | |
def create_unidiffuser_unet_config_test(): | |
unet_config = { | |
"text_dim": 32, | |
"clip_img_dim": 32, | |
"num_text_tokens": 77, | |
"num_attention_heads": 2, | |
"attention_head_dim": 8, | |
"in_channels": 4, | |
"out_channels": 4, | |
"num_layers": 2, | |
"dropout": 0.0, | |
"norm_num_groups": 32, | |
"attention_bias": False, | |
"sample_size": 16, | |
"patch_size": 2, | |
"activation_fn": "gelu", | |
"num_embeds_ada_norm": 1000, | |
"norm_type": "layer_norm", | |
"block_type": "unidiffuser", | |
"pre_layer_norm": False, | |
"use_timestep_embedding": False, | |
"norm_elementwise_affine": True, | |
"use_patch_pos_embed": False, | |
"ff_final_dropout": True, | |
"use_data_type_embedding": False, | |
} | |
return unet_config | |
def create_text_decoder_config_test(): | |
text_decoder_config = { | |
"prefix_length": 77, | |
"prefix_inner_dim": 32, | |
"prefix_hidden_dim": 32, | |
"vocab_size": 1025, # 1024 + 1 for new EOS token | |
"n_positions": 1024, | |
"n_embd": 32, | |
"n_layer": 5, | |
"n_head": 4, | |
"n_inner": 37, | |
"activation_function": "gelu", | |
"resid_pdrop": 0.1, | |
"embd_pdrop": 0.1, | |
"attn_pdrop": 0.1, | |
"layer_norm_epsilon": 1e-5, | |
"initializer_range": 0.02, | |
} | |
return text_decoder_config | |
# Hardcoded configs for the UniDiffuser V1 model at https://huggingface.co/thu-ml/unidiffuser-v1 | |
# See also https://github.com/thu-ml/unidiffuser/blob/main/configs/sample_unidiffuser_v1.py | |
def create_vae_diffusers_config_big(): | |
vae_config = { | |
"sample_size": 256, | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], | |
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
"block_out_channels": [128, 256, 512, 512], | |
"latent_channels": 4, | |
"layers_per_block": 2, | |
} | |
return vae_config | |
def create_unidiffuser_unet_config_big(): | |
unet_config = { | |
"text_dim": 64, | |
"clip_img_dim": 512, | |
"num_text_tokens": 77, | |
"num_attention_heads": 24, | |
"attention_head_dim": 64, | |
"in_channels": 4, | |
"out_channels": 4, | |
"num_layers": 30, | |
"dropout": 0.0, | |
"norm_num_groups": 32, | |
"attention_bias": False, | |
"sample_size": 64, | |
"patch_size": 2, | |
"activation_fn": "gelu", | |
"num_embeds_ada_norm": 1000, | |
"norm_type": "layer_norm", | |
"block_type": "unidiffuser", | |
"pre_layer_norm": False, | |
"use_timestep_embedding": False, | |
"norm_elementwise_affine": True, | |
"use_patch_pos_embed": False, | |
"ff_final_dropout": True, | |
"use_data_type_embedding": False, | |
} | |
return unet_config | |
# From https://huggingface.co/gpt2/blob/main/config.json, the GPT2 checkpoint used by UniDiffuser | |
def create_text_decoder_config_big(): | |
text_decoder_config = { | |
"prefix_length": 77, | |
"prefix_inner_dim": 768, | |
"prefix_hidden_dim": 64, | |
"vocab_size": 50258, # 50257 + 1 for new EOS token | |
"n_positions": 1024, | |
"n_embd": 768, | |
"n_layer": 12, | |
"n_head": 12, | |
"n_inner": 3072, | |
"activation_function": "gelu", | |
"resid_pdrop": 0.1, | |
"embd_pdrop": 0.1, | |
"attn_pdrop": 0.1, | |
"layer_norm_epsilon": 1e-5, | |
"initializer_range": 0.02, | |
} | |
return text_decoder_config | |
# Based on diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint | |
def convert_vae_to_diffusers(ckpt, diffusers_model, num_head_channels=1): | |
""" | |
Converts a UniDiffuser autoencoder_kl.pth checkpoint to a diffusers AutoencoderKL. | |
""" | |
# autoencoder_kl.pth ckpt is a torch state dict | |
vae_state_dict = torch.load(ckpt, map_location="cpu") | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
vae_state_dict, | |
additional_replacements=[meta_path], | |
num_head_channels=num_head_channels, # not used in vae | |
) | |
conv_attn_to_linear(new_checkpoint) | |
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_checkpoint) | |
for missing_key in missing_keys: | |
print(f"Missing key: {missing_key}") | |
for unexpected_key in unexpected_keys: | |
print(f"Unexpected key: {unexpected_key}") | |
return diffusers_model | |
def convert_uvit_block_to_diffusers_block( | |
uvit_state_dict, | |
new_state_dict, | |
block_prefix, | |
new_prefix="transformer.transformer_", | |
skip_connection=False, | |
): | |
""" | |
Maps the keys in a UniDiffuser transformer block (`Block`) to the keys in a diffusers transformer block | |
(`UTransformerBlock`/`UniDiffuserBlock`). | |
""" | |
prefix = new_prefix + block_prefix | |
if skip_connection: | |
new_state_dict[prefix + ".skip.skip_linear.weight"] = uvit_state_dict[block_prefix + ".skip_linear.weight"] | |
new_state_dict[prefix + ".skip.skip_linear.bias"] = uvit_state_dict[block_prefix + ".skip_linear.bias"] | |
new_state_dict[prefix + ".skip.norm.weight"] = uvit_state_dict[block_prefix + ".norm1.weight"] | |
new_state_dict[prefix + ".skip.norm.bias"] = uvit_state_dict[block_prefix + ".norm1.bias"] | |
# Create the prefix string for out_blocks. | |
prefix += ".block" | |
# Split up attention qkv.weight into to_q.weight, to_k.weight, to_v.weight | |
qkv = uvit_state_dict[block_prefix + ".attn.qkv.weight"] | |
new_attn_keys = [".attn1.to_q.weight", ".attn1.to_k.weight", ".attn1.to_v.weight"] | |
new_attn_keys = [prefix + key for key in new_attn_keys] | |
shape = qkv.shape[0] // len(new_attn_keys) | |
for i, attn_key in enumerate(new_attn_keys): | |
new_state_dict[attn_key] = qkv[i * shape : (i + 1) * shape] | |
new_state_dict[prefix + ".attn1.to_out.0.weight"] = uvit_state_dict[block_prefix + ".attn.proj.weight"] | |
new_state_dict[prefix + ".attn1.to_out.0.bias"] = uvit_state_dict[block_prefix + ".attn.proj.bias"] | |
new_state_dict[prefix + ".norm1.weight"] = uvit_state_dict[block_prefix + ".norm2.weight"] | |
new_state_dict[prefix + ".norm1.bias"] = uvit_state_dict[block_prefix + ".norm2.bias"] | |
new_state_dict[prefix + ".ff.net.0.proj.weight"] = uvit_state_dict[block_prefix + ".mlp.fc1.weight"] | |
new_state_dict[prefix + ".ff.net.0.proj.bias"] = uvit_state_dict[block_prefix + ".mlp.fc1.bias"] | |
new_state_dict[prefix + ".ff.net.2.weight"] = uvit_state_dict[block_prefix + ".mlp.fc2.weight"] | |
new_state_dict[prefix + ".ff.net.2.bias"] = uvit_state_dict[block_prefix + ".mlp.fc2.bias"] | |
new_state_dict[prefix + ".norm3.weight"] = uvit_state_dict[block_prefix + ".norm3.weight"] | |
new_state_dict[prefix + ".norm3.bias"] = uvit_state_dict[block_prefix + ".norm3.bias"] | |
return uvit_state_dict, new_state_dict | |
def convert_uvit_to_diffusers(ckpt, diffusers_model): | |
""" | |
Converts a UniDiffuser uvit_v*.pth checkpoint to a diffusers UniDiffusersModel. | |
""" | |
# uvit_v*.pth ckpt is a torch state dict | |
uvit_state_dict = torch.load(ckpt, map_location="cpu") | |
new_state_dict = {} | |
# Input layers | |
new_state_dict["vae_img_in.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"] | |
new_state_dict["vae_img_in.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"] | |
new_state_dict["clip_img_in.weight"] = uvit_state_dict["clip_img_embed.weight"] | |
new_state_dict["clip_img_in.bias"] = uvit_state_dict["clip_img_embed.bias"] | |
new_state_dict["text_in.weight"] = uvit_state_dict["text_embed.weight"] | |
new_state_dict["text_in.bias"] = uvit_state_dict["text_embed.bias"] | |
new_state_dict["pos_embed"] = uvit_state_dict["pos_embed"] | |
# Handle data type token embeddings for UniDiffuser-v1 | |
if "token_embedding.weight" in uvit_state_dict and diffusers_model.use_data_type_embedding: | |
new_state_dict["data_type_pos_embed_token"] = uvit_state_dict["pos_embed_token"] | |
new_state_dict["data_type_token_embedding.weight"] = uvit_state_dict["token_embedding.weight"] | |
# Also initialize the PatchEmbedding in UTransformer2DModel with the PatchEmbedding from the checkpoint. | |
# This isn't used in the current implementation, so might want to remove. | |
new_state_dict["transformer.pos_embed.proj.weight"] = uvit_state_dict["patch_embed.proj.weight"] | |
new_state_dict["transformer.pos_embed.proj.bias"] = uvit_state_dict["patch_embed.proj.bias"] | |
# Output layers | |
new_state_dict["transformer.norm_out.weight"] = uvit_state_dict["norm.weight"] | |
new_state_dict["transformer.norm_out.bias"] = uvit_state_dict["norm.bias"] | |
new_state_dict["vae_img_out.weight"] = uvit_state_dict["decoder_pred.weight"] | |
new_state_dict["vae_img_out.bias"] = uvit_state_dict["decoder_pred.bias"] | |
new_state_dict["clip_img_out.weight"] = uvit_state_dict["clip_img_out.weight"] | |
new_state_dict["clip_img_out.bias"] = uvit_state_dict["clip_img_out.bias"] | |
new_state_dict["text_out.weight"] = uvit_state_dict["text_out.weight"] | |
new_state_dict["text_out.bias"] = uvit_state_dict["text_out.bias"] | |
# in_blocks | |
in_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "in_blocks" in layer} | |
for in_block_prefix in list(in_blocks_prefixes): | |
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, in_block_prefix) | |
# mid_block | |
# Assume there's only one mid block | |
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, "mid_block") | |
# out_blocks | |
out_blocks_prefixes = {".".join(layer.split(".")[:2]) for layer in uvit_state_dict if "out_blocks" in layer} | |
for out_block_prefix in list(out_blocks_prefixes): | |
convert_uvit_block_to_diffusers_block(uvit_state_dict, new_state_dict, out_block_prefix, skip_connection=True) | |
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict) | |
for missing_key in missing_keys: | |
print(f"Missing key: {missing_key}") | |
for unexpected_key in unexpected_keys: | |
print(f"Unexpected key: {unexpected_key}") | |
return diffusers_model | |
def convert_caption_decoder_to_diffusers(ckpt, diffusers_model): | |
""" | |
Converts a UniDiffuser caption_decoder.pth checkpoint to a diffusers UniDiffuserTextDecoder. | |
""" | |
# caption_decoder.pth ckpt is a torch state dict | |
checkpoint_state_dict = torch.load(ckpt, map_location="cpu") | |
decoder_state_dict = {} | |
# Remove the "module." prefix, if necessary | |
caption_decoder_key = "module." | |
for key in checkpoint_state_dict: | |
if key.startswith(caption_decoder_key): | |
decoder_state_dict[key.replace(caption_decoder_key, "")] = checkpoint_state_dict.get(key) | |
else: | |
decoder_state_dict[key] = checkpoint_state_dict.get(key) | |
new_state_dict = {} | |
# Encoder and Decoder | |
new_state_dict["encode_prefix.weight"] = decoder_state_dict["encode_prefix.weight"] | |
new_state_dict["encode_prefix.bias"] = decoder_state_dict["encode_prefix.bias"] | |
new_state_dict["decode_prefix.weight"] = decoder_state_dict["decode_prefix.weight"] | |
new_state_dict["decode_prefix.bias"] = decoder_state_dict["decode_prefix.bias"] | |
# Internal GPT2LMHeadModel transformer model | |
for key, val in decoder_state_dict.items(): | |
if key.startswith("gpt"): | |
suffix = key[len("gpt") :] | |
new_state_dict["transformer" + suffix] = val | |
missing_keys, unexpected_keys = diffusers_model.load_state_dict(new_state_dict) | |
for missing_key in missing_keys: | |
print(f"Missing key: {missing_key}") | |
for unexpected_key in unexpected_keys: | |
print(f"Unexpected key: {unexpected_key}") | |
return diffusers_model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--caption_decoder_checkpoint_path", | |
default=None, | |
type=str, | |
required=False, | |
help="Path to caption decoder checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--uvit_checkpoint_path", default=None, type=str, required=False, help="Path to U-ViT checkpoint to convert." | |
) | |
parser.add_argument( | |
"--vae_checkpoint_path", | |
default=None, | |
type=str, | |
required=False, | |
help="Path to VAE checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--pipeline_output_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to save the output pipeline to.", | |
) | |
parser.add_argument( | |
"--config_type", | |
default="test", | |
type=str, | |
help=( | |
"Config type to use. Should be 'test' to create small models for testing or 'big' to convert a full" | |
" checkpoint." | |
), | |
) | |
parser.add_argument( | |
"--version", | |
default=0, | |
type=int, | |
help="The UniDiffuser model type to convert to. Should be 0 for UniDiffuser-v0 and 1 for UniDiffuser-v1.", | |
) | |
parser.add_argument( | |
"--safe_serialization", | |
action="store_true", | |
help="Whether to use safetensors/safe seialization when saving the pipeline.", | |
) | |
args = parser.parse_args() | |
# Convert the VAE model. | |
if args.vae_checkpoint_path is not None: | |
vae_config = create_vae_diffusers_config(args.config_type) | |
vae = AutoencoderKL(**vae_config) | |
vae = convert_vae_to_diffusers(args.vae_checkpoint_path, vae) | |
# Convert the U-ViT ("unet") model. | |
if args.uvit_checkpoint_path is not None: | |
unet_config = create_unidiffuser_unet_config(args.config_type, args.version) | |
unet = UniDiffuserModel(**unet_config) | |
unet = convert_uvit_to_diffusers(args.uvit_checkpoint_path, unet) | |
# Convert the caption decoder ("text_decoder") model. | |
if args.caption_decoder_checkpoint_path is not None: | |
text_decoder_config = create_text_decoder_config(args.config_type) | |
text_decoder = UniDiffuserTextDecoder(**text_decoder_config) | |
text_decoder = convert_caption_decoder_to_diffusers(args.caption_decoder_checkpoint_path, text_decoder) | |
# Scheduler is the same for both the test and big models. | |
scheduler_config = SCHEDULER_CONFIG | |
scheduler = DPMSolverMultistepScheduler( | |
beta_start=scheduler_config.beta_start, | |
beta_end=scheduler_config.beta_end, | |
beta_schedule=scheduler_config.beta_schedule, | |
solver_order=scheduler_config.solver_order, | |
) | |
if args.config_type == "test": | |
# Make a small random CLIPTextModel | |
torch.manual_seed(0) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(clip_text_encoder_config) | |
clip_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
# Make a small random CLIPVisionModel and accompanying CLIPImageProcessor | |
torch.manual_seed(0) | |
clip_image_encoder_config = CLIPVisionConfig( | |
image_size=32, | |
patch_size=2, | |
num_channels=3, | |
hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
) | |
image_encoder = CLIPVisionModelWithProjection(clip_image_encoder_config) | |
image_processor = CLIPImageProcessor(crop_size=32, size=32) | |
# Note that the text_decoder should already have its token embeddings resized. | |
text_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") | |
eos = "<|EOS|>" | |
special_tokens_dict = {"eos_token": eos} | |
text_tokenizer.add_special_tokens(special_tokens_dict) | |
elif args.config_type == "big": | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") | |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Note that the text_decoder should already have its token embeddings resized. | |
text_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
eos = "<|EOS|>" | |
special_tokens_dict = {"eos_token": eos} | |
text_tokenizer.add_special_tokens(special_tokens_dict) | |
else: | |
raise NotImplementedError( | |
f"Config type {args.config_type} is not implemented, currently only config types" | |
" 'test' and 'big' are available." | |
) | |
pipeline = UniDiffuserPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
clip_image_processor=image_processor, | |
clip_tokenizer=clip_tokenizer, | |
text_decoder=text_decoder, | |
text_tokenizer=text_tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
pipeline.save_pretrained(args.pipeline_output_path, safe_serialization=args.safe_serialization) | |