Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from itertools import product | |
import numpy as np | |
import torch | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
LCMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.import_utils import is_peft_available | |
from diffusers.utils.testing_utils import ( | |
floats_tensor, | |
require_peft_backend, | |
require_peft_version_greater, | |
skip_mps, | |
torch_device, | |
) | |
if is_peft_available(): | |
from peft import LoraConfig | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
from peft.utils import get_peft_model_state_dict | |
def state_dicts_almost_equal(sd1, sd2): | |
sd1 = dict(sorted(sd1.items())) | |
sd2 = dict(sorted(sd2.items())) | |
models_are_equal = True | |
for ten1, ten2 in zip(sd1.values(), sd2.values()): | |
if (ten1 - ten2).abs().max() > 1e-3: | |
models_are_equal = False | |
return models_are_equal | |
def check_if_lora_correctly_set(model) -> bool: | |
""" | |
Checks if the LoRA layers are correctly set with peft | |
""" | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
return True | |
return False | |
class PeftLoraLoaderMixinTests: | |
pipeline_class = None | |
scheduler_cls = None | |
scheduler_kwargs = None | |
has_two_text_encoders = False | |
unet_kwargs = None | |
vae_kwargs = None | |
def get_dummy_components(self, scheduler_cls=None, use_dora=False): | |
scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls | |
rank = 4 | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel(**self.unet_kwargs) | |
scheduler = scheduler_cls(**self.scheduler_kwargs) | |
torch.manual_seed(0) | |
vae = AutoencoderKL(**self.vae_kwargs) | |
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2") | |
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") | |
if self.has_two_text_encoders: | |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") | |
text_lora_config = LoraConfig( | |
r=rank, | |
lora_alpha=rank, | |
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], | |
init_lora_weights=False, | |
use_dora=use_dora, | |
) | |
unet_lora_config = LoraConfig( | |
r=rank, | |
lora_alpha=rank, | |
target_modules=["to_q", "to_k", "to_v", "to_out.0"], | |
init_lora_weights=False, | |
use_dora=use_dora, | |
) | |
if self.has_two_text_encoders: | |
pipeline_components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"image_encoder": None, | |
"feature_extractor": None, | |
} | |
else: | |
pipeline_components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return pipeline_components, text_lora_config, unet_lora_config | |
def get_dummy_inputs(self, with_generator=True): | |
batch_size = 1 | |
sequence_length = 10 | |
num_channels = 4 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
noise = floats_tensor((batch_size, num_channels) + sizes) | |
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
pipeline_inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"num_inference_steps": 5, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
if with_generator: | |
pipeline_inputs.update({"generator": generator}) | |
return noise, input_ids, pipeline_inputs | |
# Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb | |
def get_dummy_tokens(self): | |
max_seq_length = 77 | |
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) | |
prepared_inputs = {} | |
prepared_inputs["input_ids"] = inputs | |
return prepared_inputs | |
def test_simple_inference(self): | |
""" | |
Tests a simple inference and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs() | |
output_no_lora = pipe(**inputs).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
def test_simple_inference_with_text_lora(self): | |
""" | |
Tests a simple inference with lora attached on the text encoder | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
) | |
def test_simple_inference_with_text_lora_and_scale(self): | |
""" | |
Tests a simple inference with lora attached on the text encoder + scale argument | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
) | |
output_lora_scale = pipe( | |
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} | |
).images | |
self.assertTrue( | |
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), | |
"Lora + scale should change the output", | |
) | |
output_lora_0_scale = pipe( | |
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} | |
).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), | |
"Lora + 0 scale should lead to same result as no LoRA", | |
) | |
def test_simple_inference_with_text_lora_fused(self): | |
""" | |
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.fuse_lora() | |
# Fusing should still keep the LoRA layers | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" | |
) | |
def test_simple_inference_with_text_lora_unloaded(self): | |
""" | |
Tests a simple inference with lora attached to text encoder, then unloads the lora weights | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.unload_lora_weights() | |
# unloading should remove the LoRA layers | |
self.assertFalse( | |
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" | |
) | |
if self.has_two_text_encoders: | |
self.assertFalse( | |
check_if_lora_correctly_set(pipe.text_encoder_2), | |
"Lora not correctly unloaded in text encoder 2", | |
) | |
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), | |
"Fused lora should change the output", | |
) | |
def test_simple_inference_with_text_lora_save_load(self): | |
""" | |
Tests a simple usecase where users could use saving utilities for LoRA. | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) | |
if self.has_two_text_encoders: | |
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) | |
self.pipeline_class.save_lora_weights( | |
save_directory=tmpdirname, | |
text_encoder_lora_layers=text_encoder_state_dict, | |
text_encoder_2_lora_layers=text_encoder_2_state_dict, | |
safe_serialization=False, | |
) | |
else: | |
self.pipeline_class.save_lora_weights( | |
save_directory=tmpdirname, | |
text_encoder_lora_layers=text_encoder_state_dict, | |
safe_serialization=False, | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) | |
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
self.assertTrue( | |
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
"Loading from saved checkpoints should give same results.", | |
) | |
def test_simple_inference_save_pretrained(self): | |
""" | |
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe.save_pretrained(tmpdirname) | |
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) | |
pipe_from_pretrained.to(torch_device) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), | |
"Lora not correctly set in text encoder", | |
) | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), | |
"Lora not correctly set in text encoder 2", | |
) | |
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), | |
"Loading from saved checkpoints should give same results.", | |
) | |
def test_simple_inference_with_text_unet_lora_save_load(self): | |
""" | |
Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) | |
unet_state_dict = get_peft_model_state_dict(pipe.unet) | |
if self.has_two_text_encoders: | |
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) | |
self.pipeline_class.save_lora_weights( | |
save_directory=tmpdirname, | |
text_encoder_lora_layers=text_encoder_state_dict, | |
text_encoder_2_lora_layers=text_encoder_2_state_dict, | |
unet_lora_layers=unet_state_dict, | |
safe_serialization=False, | |
) | |
else: | |
self.pipeline_class.save_lora_weights( | |
save_directory=tmpdirname, | |
text_encoder_lora_layers=text_encoder_state_dict, | |
unet_lora_layers=unet_state_dict, | |
safe_serialization=False, | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) | |
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
self.assertTrue( | |
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
"Loading from saved checkpoints should give same results.", | |
) | |
def test_simple_inference_with_text_unet_lora_and_scale(self): | |
""" | |
Tests a simple inference with lora attached on the text encoder + Unet + scale argument | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
) | |
output_lora_scale = pipe( | |
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} | |
).images | |
self.assertTrue( | |
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), | |
"Lora + scale should change the output", | |
) | |
output_lora_0_scale = pipe( | |
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} | |
).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), | |
"Lora + 0 scale should lead to same result as no LoRA", | |
) | |
self.assertTrue( | |
pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, | |
"The scaling parameter has not been correctly restored!", | |
) | |
def test_simple_inference_with_text_lora_unet_fused(self): | |
""" | |
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
and makes sure it works as expected - with unet | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.fuse_lora() | |
# Fusing should still keep the LoRA layers | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet") | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" | |
) | |
def test_simple_inference_with_text_unet_lora_unloaded(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.unload_lora_weights() | |
# unloading should remove the LoRA layers | |
self.assertFalse( | |
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" | |
) | |
self.assertFalse(check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet") | |
if self.has_two_text_encoders: | |
self.assertFalse( | |
check_if_lora_correctly_set(pipe.text_encoder_2), | |
"Lora not correctly unloaded in text encoder 2", | |
) | |
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), | |
"Fused lora should change the output", | |
) | |
def test_simple_inference_with_text_unet_lora_unfused(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.fuse_lora() | |
output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.unfuse_lora() | |
output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
# unloading should remove the LoRA layers | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers") | |
if self.has_two_text_encoders: | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" | |
) | |
# Fuse and unfuse should lead to the same results | |
self.assertTrue( | |
np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3), | |
"Fused lora should change the output", | |
) | |
def test_simple_inference_with_text_unet_multi_adapter(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, attaches | |
multiple adapters and set them | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.set_adapters("adapter-1") | |
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters("adapter-2") | |
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images | |
# Fuse and unfuse should lead to the same results | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and 2 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and mixed adapters should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 2 and mixed adapters should give different results", | |
) | |
pipe.disable_lora() | |
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
def test_simple_inference_with_text_unet_block_scale(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, attaches | |
one adapter and set differnt weights for different blocks (i.e. block lora) | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
weights_1 = {"text_encoder": 2, "unet": {"down": 5}} | |
pipe.set_adapters("adapter-1", weights_1) | |
output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
weights_2 = {"unet": {"up": 5}} | |
pipe.set_adapters("adapter-1", weights_2) | |
output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3), | |
"LoRA weights 1 and 2 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3), | |
"No adapter and LoRA weights 1 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3), | |
"No adapter and LoRA weights 2 should give different results", | |
) | |
pipe.disable_lora() | |
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
def test_simple_inference_with_text_unet_multi_adapter_block_lora(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, attaches | |
multiple adapters and set differnt weights for different blocks (i.e. block lora) | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
scales_1 = {"text_encoder": 2, "unet": {"down": 5}} | |
scales_2 = {"unet": {"down": 5, "mid": 5}} | |
pipe.set_adapters("adapter-1", scales_1) | |
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters("adapter-2", scales_2) | |
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2]) | |
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images | |
# Fuse and unfuse should lead to the same results | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and 2 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and mixed adapters should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 2 and mixed adapters should give different results", | |
) | |
pipe.disable_lora() | |
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
# a mismatching number of adapter_names and adapter_weights should raise an error | |
with self.assertRaises(ValueError): | |
pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1]) | |
def test_simple_inference_with_text_unet_block_scale_for_all_dict_options(self): | |
"""Tests that any valid combination of lora block scales can be used in pipe.set_adapter""" | |
def updown_options(blocks_with_tf, layers_per_block, value): | |
""" | |
Generate every possible combination for how a lora weight dict for the up/down part can be. | |
E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ... | |
""" | |
num_val = value | |
list_val = [value] * layers_per_block | |
node_opts = [None, num_val, list_val] | |
node_opts_foreach_block = [node_opts] * len(blocks_with_tf) | |
updown_opts = [num_val] | |
for nodes in product(*node_opts_foreach_block): | |
if all(n is None for n in nodes): | |
continue | |
opt = {} | |
for b, n in zip(blocks_with_tf, nodes): | |
if n is not None: | |
opt["block_" + str(b)] = n | |
updown_opts.append(opt) | |
return updown_opts | |
def all_possible_dict_opts(unet, value): | |
""" | |
Generate every possible combination for how a lora weight dict can be. | |
E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ... | |
""" | |
down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")] | |
up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")] | |
layers_per_block = unet.config.layers_per_block | |
text_encoder_opts = [None, value] | |
text_encoder_2_opts = [None, value] | |
mid_opts = [None, value] | |
down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value) | |
up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value) | |
opts = [] | |
for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts): | |
if all(o is None for o in (t1, t2, d, m, u)): | |
continue | |
opt = {} | |
if t1 is not None: | |
opt["text_encoder"] = t1 | |
if t2 is not None: | |
opt["text_encoder_2"] = t2 | |
if all(o is None for o in (d, m, u)): | |
# no unet scaling | |
continue | |
opt["unet"] = {} | |
if d is not None: | |
opt["unet"]["down"] = d | |
if m is not None: | |
opt["unet"]["mid"] = m | |
if u is not None: | |
opt["unet"]["up"] = u | |
opts.append(opt) | |
return opts | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(self.scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
for scale_dict in all_possible_dict_opts(pipe.unet, value=1234): | |
# test if lora block scales can be set with this scale_dict | |
if not self.has_two_text_encoders and "text_encoder_2" in scale_dict: | |
del scale_dict["text_encoder_2"] | |
pipe.set_adapters("adapter-1", scale_dict) # test will fail if this line throws an error | |
def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, attaches | |
multiple adapters and set/delete them | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.set_adapters("adapter-1") | |
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters("adapter-2") | |
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and 2 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and mixed adapters should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 2 and mixed adapters should give different results", | |
) | |
pipe.delete_adapters("adapter-1") | |
output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and 2 should give different results", | |
) | |
pipe.delete_adapters("adapter-2") | |
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
pipe.delete_adapters(["adapter-1", "adapter-2"]) | |
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
def test_simple_inference_with_text_unet_multi_adapter_weighted(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, attaches | |
multiple adapters and set them | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.set_adapters("adapter-1") | |
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters("adapter-2") | |
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images | |
# Fuse and unfuse should lead to the same results | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and 2 should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 1 and mixed adapters should give different results", | |
) | |
self.assertFalse( | |
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Adapter 2 and mixed adapters should give different results", | |
) | |
pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) | |
output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
"Weighted adapter and mixed adapter should give different results", | |
) | |
pipe.disable_lora() | |
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
"output with no lora and output with lora disabled should give same results", | |
) | |
def test_lora_fuse_nan(self): | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
# corrupt one LoRA weight with `inf` values | |
with torch.no_grad(): | |
pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float( | |
"inf" | |
) | |
# with `safe_fusing=True` we should see an Error | |
with self.assertRaises(ValueError): | |
pipe.fuse_lora(safe_fusing=True) | |
# without we should not see an error, but every image will be black | |
pipe.fuse_lora(safe_fusing=False) | |
out = pipe("test", num_inference_steps=2, output_type="np").images | |
self.assertTrue(np.isnan(out).all()) | |
def test_get_adapters(self): | |
""" | |
Tests a simple usecase where we attach multiple adapters and check if the results | |
are the expected results | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
adapter_names = pipe.get_active_adapters() | |
self.assertListEqual(adapter_names, ["adapter-1"]) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
adapter_names = pipe.get_active_adapters() | |
self.assertListEqual(adapter_names, ["adapter-2"]) | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) | |
def test_get_list_adapters(self): | |
""" | |
Tests a simple usecase where we attach multiple adapters and check if the results | |
are the expected results | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
adapter_names = pipe.get_list_adapters() | |
self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]}) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
adapter_names = pipe.get_list_adapters() | |
self.assertDictEqual( | |
adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]} | |
) | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
self.assertDictEqual( | |
pipe.get_list_adapters(), | |
{"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]}, | |
) | |
pipe.unet.add_adapter(unet_lora_config, "adapter-3") | |
self.assertDictEqual( | |
pipe.get_list_adapters(), | |
{"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]}, | |
) | |
def test_simple_inference_with_text_lora_unet_fused_multi(self): | |
""" | |
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
and makes sure it works as expected - with unet and multi-adapter case | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-1") | |
# Attach a second adapter | |
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
pipe.unet.add_adapter(unet_lora_config, "adapter-2") | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
# set them to multi-adapter inference mode | |
pipe.set_adapters(["adapter-1", "adapter-2"]) | |
ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.set_adapters(["adapter-1"]) | |
ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images | |
pipe.fuse_lora(adapter_names=["adapter-1"]) | |
# Fusing should still keep the LoRA layers so outpout should remain the same | |
outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3), | |
"Fused lora should not change the output", | |
) | |
pipe.unfuse_lora() | |
pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"]) | |
# Fusing should still keep the LoRA layers | |
output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue( | |
np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3), | |
"Fused lora should not change the output", | |
) | |
def test_simple_inference_with_dora(self): | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls, use_dora=True) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertTrue(output_no_dora_lora.shape == (1, 64, 64, 3)) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images | |
self.assertFalse( | |
np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3), | |
"DoRA lora should change the output", | |
) | |
def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self): | |
""" | |
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
and makes sure it works as expected | |
""" | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_, _, inputs = self.get_dummy_inputs(with_generator=False) | |
pipe.text_encoder.add_adapter(text_lora_config) | |
pipe.unet.add_adapter(unet_lora_config) | |
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2.add_adapter(text_lora_config) | |
self.assertTrue( | |
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
) | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) | |
if self.has_two_text_encoders: | |
pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) | |
# Just makes sure it works.. | |
_ = pipe(**inputs, generator=torch.manual_seed(0)).images | |
def test_modify_padding_mode(self): | |
def set_pad_mode(network, mode="circular"): | |
for _, module in network.named_modules(): | |
if isinstance(module, torch.nn.Conv2d): | |
module.padding_mode = mode | |
for scheduler_cls in [DDIMScheduler, LCMScheduler]: | |
components, _, _ = self.get_dummy_components(scheduler_cls) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
_pad_mode = "circular" | |
set_pad_mode(pipe.vae, _pad_mode) | |
set_pad_mode(pipe.unet, _pad_mode) | |
_, _, inputs = self.get_dummy_inputs() | |
_ = pipe(**inputs).images | |