UltraEdit-SD3 / UltraEdit /diffusers /tests /models /test_attention_processor.py
BleachNick's picture
upload required packages
87d40d2
raw
history blame
4 kB
import tempfile
import unittest
import numpy as np
import torch
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor
class AttnAddedKVProcessorTests(unittest.TestCase):
def get_constructor_arguments(self, only_cross_attention: bool = False):
query_dim = 10
if only_cross_attention:
cross_attention_dim = 12
else:
# when only cross attention is not set, the cross attention dim must be the same as the query dim
cross_attention_dim = query_dim
return {
"query_dim": query_dim,
"cross_attention_dim": cross_attention_dim,
"heads": 2,
"dim_head": 4,
"added_kv_proj_dim": 6,
"norm_num_groups": 1,
"only_cross_attention": only_cross_attention,
"processor": AttnAddedKVProcessor(),
}
def get_forward_arguments(self, query_dim, added_kv_proj_dim):
batch_size = 2
hidden_states = torch.rand(batch_size, query_dim, 3, 2)
encoder_hidden_states = torch.rand(batch_size, 4, added_kv_proj_dim)
attention_mask = None
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"attention_mask": attention_mask,
}
def test_only_cross_attention(self):
# self and cross attention
torch.manual_seed(0)
constructor_args = self.get_constructor_arguments(only_cross_attention=False)
attn = Attention(**constructor_args)
self.assertTrue(attn.to_k is not None)
self.assertTrue(attn.to_v is not None)
forward_args = self.get_forward_arguments(
query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"]
)
self_and_cross_attn_out = attn(**forward_args)
# only self attention
torch.manual_seed(0)
constructor_args = self.get_constructor_arguments(only_cross_attention=True)
attn = Attention(**constructor_args)
self.assertTrue(attn.to_k is None)
self.assertTrue(attn.to_v is None)
forward_args = self.get_forward_arguments(
query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"]
)
only_cross_attn_out = attn(**forward_args)
self.assertTrue((only_cross_attn_out != self_and_cross_attn_out).all())
class DeprecatedAttentionBlockTests(unittest.TestCase):
def test_conversion_when_using_device_map(self):
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pre_conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
# the initial conversion succeeds
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", device_map="balanced", safety_checker=None
)
conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
with tempfile.TemporaryDirectory() as tmpdir:
# save the converted model
pipe.save_pretrained(tmpdir)
# can also load the converted weights
pipe = DiffusionPipeline.from_pretrained(tmpdir, device_map="balanced", safety_checker=None)
after_conversion = pipe(
"foo",
num_inference_steps=2,
generator=torch.Generator("cpu").manual_seed(0),
output_type="np",
).images
self.assertTrue(np.allclose(pre_conversion, conversion, atol=1e-3))
self.assertTrue(np.allclose(conversion, after_conversion, atol=1e-3))