Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import unittest | |
import numpy as np | |
import torch | |
from torch import nn | |
from diffusers import ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel | |
from diffusers.utils import logging | |
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, is_flaky, torch_device | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
logger = logging.get_logger(__name__) | |
enable_full_determinism() | |
class UNetControlNetXSModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNetControlNetXSModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 4 | |
sizes = (16, 16) | |
conditioning_image_size = (3, 32, 32) # size of additional, unprocessed image for control-conditioning | |
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) | |
controlnet_cond = floats_tensor((batch_size, *conditioning_image_size)).to(torch_device) | |
conditioning_scale = 1 | |
return { | |
"sample": noise, | |
"timestep": time_step, | |
"encoder_hidden_states": encoder_hidden_states, | |
"controlnet_cond": controlnet_cond, | |
"conditioning_scale": conditioning_scale, | |
} | |
def input_shape(self): | |
return (4, 16, 16) | |
def output_shape(self): | |
return (4, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"sample_size": 16, | |
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), | |
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), | |
"block_out_channels": (4, 8), | |
"cross_attention_dim": 8, | |
"transformer_layers_per_block": 1, | |
"num_attention_heads": 2, | |
"norm_num_groups": 4, | |
"upcast_attention": False, | |
"ctrl_block_out_channels": [2, 4], | |
"ctrl_num_attention_heads": 4, | |
"ctrl_max_norm_num_groups": 2, | |
"ctrl_conditioning_embedding_out_channels": (2, 2), | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def get_dummy_unet(self): | |
"""For some tests we also need the underlying UNet. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter""" | |
return UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
sample_size=16, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=8, | |
norm_num_groups=4, | |
use_linear_projection=True, | |
) | |
def get_dummy_controlnet_from_unet(self, unet, **kwargs): | |
"""For some tests we also need the underlying ControlNetXS-Adapter. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter""" | |
# size_ratio and conditioning_embedding_out_channels chosen to keep model small | |
return ControlNetXSAdapter.from_unet(unet, size_ratio=1, conditioning_embedding_out_channels=(2, 2), **kwargs) | |
def test_from_unet(self): | |
unet = self.get_dummy_unet() | |
controlnet = self.get_dummy_controlnet_from_unet(unet) | |
model = UNetControlNetXSModel.from_unet(unet, controlnet) | |
model_state_dict = model.state_dict() | |
def assert_equal_weights(module, weight_dict_prefix): | |
for param_name, param_value in module.named_parameters(): | |
assert torch.equal(model_state_dict[weight_dict_prefix + "." + param_name], param_value) | |
# # check unet | |
# everything expect down,mid,up blocks | |
modules_from_unet = [ | |
"time_embedding", | |
"conv_in", | |
"conv_norm_out", | |
"conv_out", | |
] | |
for p in modules_from_unet: | |
assert_equal_weights(getattr(unet, p), "base_" + p) | |
optional_modules_from_unet = [ | |
"class_embedding", | |
"add_time_proj", | |
"add_embedding", | |
] | |
for p in optional_modules_from_unet: | |
if hasattr(unet, p) and getattr(unet, p) is not None: | |
assert_equal_weights(getattr(unet, p), "base_" + p) | |
# down blocks | |
assert len(unet.down_blocks) == len(model.down_blocks) | |
for i, d in enumerate(unet.down_blocks): | |
assert_equal_weights(d.resnets, f"down_blocks.{i}.base_resnets") | |
if hasattr(d, "attentions"): | |
assert_equal_weights(d.attentions, f"down_blocks.{i}.base_attentions") | |
if hasattr(d, "downsamplers") and getattr(d, "downsamplers") is not None: | |
assert_equal_weights(d.downsamplers[0], f"down_blocks.{i}.base_downsamplers") | |
# mid block | |
assert_equal_weights(unet.mid_block, "mid_block.base_midblock") | |
# up blocks | |
assert len(unet.up_blocks) == len(model.up_blocks) | |
for i, u in enumerate(unet.up_blocks): | |
assert_equal_weights(u.resnets, f"up_blocks.{i}.resnets") | |
if hasattr(u, "attentions"): | |
assert_equal_weights(u.attentions, f"up_blocks.{i}.attentions") | |
if hasattr(u, "upsamplers") and getattr(u, "upsamplers") is not None: | |
assert_equal_weights(u.upsamplers[0], f"up_blocks.{i}.upsamplers") | |
# # check controlnet | |
# everything expect down,mid,up blocks | |
modules_from_controlnet = { | |
"controlnet_cond_embedding": "controlnet_cond_embedding", | |
"conv_in": "ctrl_conv_in", | |
"control_to_base_for_conv_in": "control_to_base_for_conv_in", | |
} | |
optional_modules_from_controlnet = {"time_embedding": "ctrl_time_embedding"} | |
for name_in_controlnet, name_in_unetcnxs in modules_from_controlnet.items(): | |
assert_equal_weights(getattr(controlnet, name_in_controlnet), name_in_unetcnxs) | |
for name_in_controlnet, name_in_unetcnxs in optional_modules_from_controlnet.items(): | |
if hasattr(controlnet, name_in_controlnet) and getattr(controlnet, name_in_controlnet) is not None: | |
assert_equal_weights(getattr(controlnet, name_in_controlnet), name_in_unetcnxs) | |
# down blocks | |
assert len(controlnet.down_blocks) == len(model.down_blocks) | |
for i, d in enumerate(controlnet.down_blocks): | |
assert_equal_weights(d.resnets, f"down_blocks.{i}.ctrl_resnets") | |
assert_equal_weights(d.base_to_ctrl, f"down_blocks.{i}.base_to_ctrl") | |
assert_equal_weights(d.ctrl_to_base, f"down_blocks.{i}.ctrl_to_base") | |
if d.attentions is not None: | |
assert_equal_weights(d.attentions, f"down_blocks.{i}.ctrl_attentions") | |
if d.downsamplers is not None: | |
assert_equal_weights(d.downsamplers, f"down_blocks.{i}.ctrl_downsamplers") | |
# mid block | |
assert_equal_weights(controlnet.mid_block.base_to_ctrl, "mid_block.base_to_ctrl") | |
assert_equal_weights(controlnet.mid_block.midblock, "mid_block.ctrl_midblock") | |
assert_equal_weights(controlnet.mid_block.ctrl_to_base, "mid_block.ctrl_to_base") | |
# up blocks | |
assert len(controlnet.up_connections) == len(model.up_blocks) | |
for i, u in enumerate(controlnet.up_connections): | |
assert_equal_weights(u.ctrl_to_base, f"up_blocks.{i}.ctrl_to_base") | |
def test_freeze_unet(self): | |
def assert_frozen(module): | |
for p in module.parameters(): | |
assert not p.requires_grad | |
def assert_unfrozen(module): | |
for p in module.parameters(): | |
assert p.requires_grad | |
init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
model = UNetControlNetXSModel(**init_dict) | |
model.freeze_unet_params() | |
# # check unet | |
# everything expect down,mid,up blocks | |
modules_from_unet = [ | |
model.base_time_embedding, | |
model.base_conv_in, | |
model.base_conv_norm_out, | |
model.base_conv_out, | |
] | |
for m in modules_from_unet: | |
assert_frozen(m) | |
optional_modules_from_unet = [ | |
model.base_add_time_proj, | |
model.base_add_embedding, | |
] | |
for m in optional_modules_from_unet: | |
if m is not None: | |
assert_frozen(m) | |
# down blocks | |
for i, d in enumerate(model.down_blocks): | |
assert_frozen(d.base_resnets) | |
if isinstance(d.base_attentions, nn.ModuleList): # attentions can be list of Nones | |
assert_frozen(d.base_attentions) | |
if d.base_downsamplers is not None: | |
assert_frozen(d.base_downsamplers) | |
# mid block | |
assert_frozen(model.mid_block.base_midblock) | |
# up blocks | |
for i, u in enumerate(model.up_blocks): | |
assert_frozen(u.resnets) | |
if isinstance(u.attentions, nn.ModuleList): # attentions can be list of Nones | |
assert_frozen(u.attentions) | |
if u.upsamplers is not None: | |
assert_frozen(u.upsamplers) | |
# # check controlnet | |
# everything expect down,mid,up blocks | |
modules_from_controlnet = [ | |
model.controlnet_cond_embedding, | |
model.ctrl_conv_in, | |
model.control_to_base_for_conv_in, | |
] | |
optional_modules_from_controlnet = [model.ctrl_time_embedding] | |
for m in modules_from_controlnet: | |
assert_unfrozen(m) | |
for m in optional_modules_from_controlnet: | |
if m is not None: | |
assert_unfrozen(m) | |
# down blocks | |
for d in model.down_blocks: | |
assert_unfrozen(d.ctrl_resnets) | |
assert_unfrozen(d.base_to_ctrl) | |
assert_unfrozen(d.ctrl_to_base) | |
if isinstance(d.ctrl_attentions, nn.ModuleList): # attentions can be list of Nones | |
assert_unfrozen(d.ctrl_attentions) | |
if d.ctrl_downsamplers is not None: | |
assert_unfrozen(d.ctrl_downsamplers) | |
# mid block | |
assert_unfrozen(model.mid_block.base_to_ctrl) | |
assert_unfrozen(model.mid_block.ctrl_midblock) | |
assert_unfrozen(model.mid_block.ctrl_to_base) | |
# up blocks | |
for u in model.up_blocks: | |
assert_unfrozen(u.ctrl_to_base) | |
def test_gradient_checkpointing_is_applied(self): | |
model_class_copy = copy.copy(UNetControlNetXSModel) | |
modules_with_gc_enabled = {} | |
# now monkey patch the following function: | |
# def _set_gradient_checkpointing(self, module, value=False): | |
# if hasattr(module, "gradient_checkpointing"): | |
# module.gradient_checkpointing = value | |
def _set_gradient_checkpointing_new(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
modules_with_gc_enabled[module.__class__.__name__] = True | |
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new | |
init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
model = model_class_copy(**init_dict) | |
model.enable_gradient_checkpointing() | |
EXPECTED_SET = { | |
"Transformer2DModel", | |
"UNetMidBlock2DCrossAttn", | |
"ControlNetXSCrossAttnDownBlock2D", | |
"ControlNetXSCrossAttnMidBlock2D", | |
"ControlNetXSCrossAttnUpBlock2D", | |
} | |
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET | |
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" | |
def test_forward_no_control(self): | |
unet = self.get_dummy_unet() | |
controlnet = self.get_dummy_controlnet_from_unet(unet) | |
model = UNetControlNetXSModel.from_unet(unet, controlnet) | |
unet = unet.to(torch_device) | |
model = model.to(torch_device) | |
input_ = self.dummy_input | |
control_specific_input = ["controlnet_cond", "conditioning_scale"] | |
input_for_unet = {k: v for k, v in input_.items() if k not in control_specific_input} | |
with torch.no_grad(): | |
unet_output = unet(**input_for_unet).sample.cpu() | |
unet_controlnet_output = model(**input_, apply_control=False).sample.cpu() | |
assert np.abs(unet_output.flatten() - unet_controlnet_output.flatten()).max() < 3e-4 | |
def test_time_embedding_mixing(self): | |
unet = self.get_dummy_unet() | |
controlnet = self.get_dummy_controlnet_from_unet(unet) | |
controlnet_mix_time = self.get_dummy_controlnet_from_unet( | |
unet, time_embedding_mix=0.5, learn_time_embedding=True | |
) | |
model = UNetControlNetXSModel.from_unet(unet, controlnet) | |
model_mix_time = UNetControlNetXSModel.from_unet(unet, controlnet_mix_time) | |
unet = unet.to(torch_device) | |
model = model.to(torch_device) | |
model_mix_time = model_mix_time.to(torch_device) | |
input_ = self.dummy_input | |
with torch.no_grad(): | |
output = model(**input_).sample | |
output_mix_time = model_mix_time(**input_).sample | |
assert output.shape == output_mix_time.shape | |
def test_forward_with_norm_groups(self): | |
# UNetControlNetXSModel currently only supports StableDiffusion and StableDiffusion-XL, both of which have norm_num_groups fixed at 32. So we don't need to test different values for norm_num_groups. | |
pass | |