Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import MotionAdapter, UNet2DConditionModel, UNetMotionModel | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
logger = logging.get_logger(__name__) | |
enable_full_determinism() | |
class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = UNetMotionModel | |
main_input_name = "sample" | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 4 | |
num_frames = 4 | |
sizes = (16, 16) | |
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
time_step = torch.tensor([10]).to(torch_device) | |
encoder_hidden_states = floats_tensor((batch_size, 4, 16)).to(torch_device) | |
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} | |
def input_shape(self): | |
return (4, 4, 16, 16) | |
def output_shape(self): | |
return (4, 4, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"block_out_channels": (16, 32), | |
"norm_num_groups": 16, | |
"down_block_types": ("CrossAttnDownBlockMotion", "DownBlockMotion"), | |
"up_block_types": ("UpBlockMotion", "CrossAttnUpBlockMotion"), | |
"cross_attention_dim": 16, | |
"num_attention_heads": 2, | |
"out_channels": 4, | |
"in_channels": 4, | |
"layers_per_block": 1, | |
"sample_size": 16, | |
} | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_from_unet2d(self): | |
torch.manual_seed(0) | |
unet2d = UNet2DConditionModel() | |
torch.manual_seed(1) | |
model = self.model_class.from_unet2d(unet2d) | |
model_state_dict = model.state_dict() | |
for param_name, param_value in unet2d.named_parameters(): | |
self.assertTrue(torch.equal(model_state_dict[param_name], param_value)) | |
def test_freeze_unet2d(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.freeze_unet2d_params() | |
for param_name, param_value in model.named_parameters(): | |
if "motion_modules" not in param_name: | |
self.assertFalse(param_value.requires_grad) | |
else: | |
self.assertTrue(param_value.requires_grad) | |
def test_loading_motion_adapter(self): | |
model = self.model_class() | |
adapter = MotionAdapter() | |
model.load_motion_modules(adapter) | |
for idx, down_block in enumerate(model.down_blocks): | |
adapter_state_dict = adapter.down_blocks[idx].motion_modules.state_dict() | |
for param_name, param_value in down_block.motion_modules.named_parameters(): | |
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) | |
for idx, up_block in enumerate(model.up_blocks): | |
adapter_state_dict = adapter.up_blocks[idx].motion_modules.state_dict() | |
for param_name, param_value in up_block.motion_modules.named_parameters(): | |
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) | |
mid_block_adapter_state_dict = adapter.mid_block.motion_modules.state_dict() | |
for param_name, param_value in model.mid_block.motion_modules.named_parameters(): | |
self.assertTrue(torch.equal(mid_block_adapter_state_dict[param_name], param_value)) | |
def test_saving_motion_modules(self): | |
torch.manual_seed(0) | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_motion_modules(tmpdirname) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors"))) | |
adapter_loaded = MotionAdapter.from_pretrained(tmpdirname) | |
torch.manual_seed(0) | |
model_loaded = self.model_class(**init_dict) | |
model_loaded.load_motion_modules(adapter_loaded) | |
model_loaded.to(torch_device) | |
with torch.no_grad(): | |
output = model(**inputs_dict)[0] | |
output_loaded = model_loaded(**inputs_dict)[0] | |
max_diff = (output - output_loaded).abs().max().item() | |
self.assertLessEqual(max_diff, 1e-4, "Models give different forward passes") | |
def test_xformers_enable_works(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.enable_xformers_memory_efficient_attention() | |
assert ( | |
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ | |
== "XFormersAttnProcessor" | |
), "xformers is not enabled" | |
def test_gradient_checkpointing_is_applied(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model_class_copy = copy.copy(self.model_class) | |
modules_with_gc_enabled = {} | |
# now monkey patch the following function: | |
# def _set_gradient_checkpointing(self, module, value=False): | |
# if hasattr(module, "gradient_checkpointing"): | |
# module.gradient_checkpointing = value | |
def _set_gradient_checkpointing_new(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
modules_with_gc_enabled[module.__class__.__name__] = True | |
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new | |
model = model_class_copy(**init_dict) | |
model.enable_gradient_checkpointing() | |
EXPECTED_SET = { | |
"CrossAttnUpBlockMotion", | |
"CrossAttnDownBlockMotion", | |
"UNetMidBlockCrossAttnMotion", | |
"UpBlockMotion", | |
"Transformer2DModel", | |
"DownBlockMotion", | |
} | |
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET | |
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" | |
def test_feed_forward_chunking(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["block_out_channels"] = (32, 64) | |
init_dict["norm_num_groups"] = 32 | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict)[0] | |
model.enable_forward_chunking() | |
with torch.no_grad(): | |
output_2 = model(**inputs_dict)[0] | |
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") | |
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 | |
def test_pickle(self): | |
# enable deterministic behavior for gradient checkpointing | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
with torch.no_grad(): | |
sample = model(**inputs_dict).sample | |
sample_copy = copy.copy(sample) | |
assert (sample - sample_copy).abs().max() < 1e-4 | |
def test_from_save_pretrained(self, expected_max_diff=5e-5): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, safe_serialization=False) | |
torch.manual_seed(0) | |
new_model = self.model_class.from_pretrained(tmpdirname) | |
new_model.to(torch_device) | |
with torch.no_grad(): | |
image = model(**inputs_dict) | |
if isinstance(image, dict): | |
image = image.to_tuple()[0] | |
new_image = new_model(**inputs_dict) | |
if isinstance(new_image, dict): | |
new_image = new_image.to_tuple()[0] | |
max_diff = (image - new_image).abs().max().item() | |
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") | |
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False) | |
torch.manual_seed(0) | |
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") | |
# non-variant cannot be loaded | |
with self.assertRaises(OSError) as error_context: | |
self.model_class.from_pretrained(tmpdirname) | |
# make sure that error message states what keys are missing | |
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) | |
new_model.to(torch_device) | |
with torch.no_grad(): | |
image = model(**inputs_dict) | |
if isinstance(image, dict): | |
image = image.to_tuple()[0] | |
new_image = new_model(**inputs_dict) | |
if isinstance(new_image, dict): | |
new_image = new_image.to_tuple()[0] | |
max_diff = (image - new_image).abs().max().item() | |
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") | |
def test_forward_with_norm_groups(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
init_dict["norm_num_groups"] = 16 | |
init_dict["block_out_channels"] = (16, 32) | |
model = self.model_class(**init_dict) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
output = model(**inputs_dict) | |
if isinstance(output, dict): | |
output = output.to_tuple()[0] | |
self.assertIsNotNone(output) | |
expected_shape = inputs_dict["sample"].shape | |
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |