Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
class ImageProcessorTest(unittest.TestCase): | |
def dummy_sample(self): | |
batch_size = 1 | |
num_channels = 3 | |
height = 8 | |
width = 8 | |
sample = torch.rand((batch_size, num_channels, height, width)) | |
return sample | |
def dummy_mask(self): | |
batch_size = 1 | |
num_channels = 1 | |
height = 8 | |
width = 8 | |
sample = torch.rand((batch_size, num_channels, height, width)) | |
return sample | |
def to_np(self, image): | |
if isinstance(image[0], PIL.Image.Image): | |
return np.stack([np.array(i) for i in image], axis=0) | |
elif isinstance(image, torch.Tensor): | |
return image.cpu().numpy().transpose(0, 2, 3, 1) | |
return image | |
def test_vae_image_processor_pt(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) | |
input_pt = self.dummy_sample | |
input_np = self.to_np(input_pt) | |
for output_type in ["pt", "np", "pil"]: | |
out = image_processor.postprocess( | |
image_processor.preprocess(input_pt), | |
output_type=output_type, | |
) | |
out_np = self.to_np(out) | |
in_np = (input_np * 255).round() if output_type == "pil" else input_np | |
assert ( | |
np.abs(in_np - out_np).max() < 1e-6 | |
), f"decoded output does not match input for output_type {output_type}" | |
def test_vae_image_processor_np(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) | |
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) | |
for output_type in ["pt", "np", "pil"]: | |
out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type) | |
out_np = self.to_np(out) | |
in_np = (input_np * 255).round() if output_type == "pil" else input_np | |
assert ( | |
np.abs(in_np - out_np).max() < 1e-6 | |
), f"decoded output does not match input for output_type {output_type}" | |
def test_vae_image_processor_pil(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) | |
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) | |
input_pil = image_processor.numpy_to_pil(input_np) | |
for output_type in ["pt", "np", "pil"]: | |
out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type) | |
for i, o in zip(input_pil, out): | |
in_np = np.array(i) | |
out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round() | |
assert ( | |
np.abs(in_np - out_np).max() < 1e-6 | |
), f"decoded output does not match input for output_type {output_type}" | |
def test_preprocess_input_3d(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) | |
input_pt_4d = self.dummy_sample | |
input_pt_3d = input_pt_4d.squeeze(0) | |
out_pt_4d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_4d), | |
output_type="np", | |
) | |
out_pt_3d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_3d), | |
output_type="np", | |
) | |
input_np_4d = self.to_np(self.dummy_sample) | |
input_np_3d = input_np_4d.squeeze(0) | |
out_np_4d = image_processor.postprocess( | |
image_processor.preprocess(input_np_4d), | |
output_type="np", | |
) | |
out_np_3d = image_processor.postprocess( | |
image_processor.preprocess(input_np_3d), | |
output_type="np", | |
) | |
assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6 | |
assert np.abs(out_np_4d - out_np_3d).max() < 1e-6 | |
def test_preprocess_input_list(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) | |
input_pt_4d = self.dummy_sample | |
input_pt_list = list(input_pt_4d) | |
out_pt_4d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_4d), | |
output_type="np", | |
) | |
out_pt_list = image_processor.postprocess( | |
image_processor.preprocess(input_pt_list), | |
output_type="np", | |
) | |
input_np_4d = self.to_np(self.dummy_sample) | |
input_np_list = list(input_np_4d) | |
out_np_4d = image_processor.postprocess( | |
image_processor.preprocess(input_np_4d), | |
output_type="np", | |
) | |
out_np_list = image_processor.postprocess( | |
image_processor.preprocess(input_np_list), | |
output_type="np", | |
) | |
assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6 | |
assert np.abs(out_np_4d - out_np_list).max() < 1e-6 | |
def test_preprocess_input_mask_3d(self): | |
image_processor = VaeImageProcessor( | |
do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
) | |
input_pt_4d = self.dummy_mask | |
input_pt_3d = input_pt_4d.squeeze(0) | |
input_pt_2d = input_pt_3d.squeeze(0) | |
out_pt_4d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_4d), | |
output_type="np", | |
) | |
out_pt_3d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_3d), | |
output_type="np", | |
) | |
out_pt_2d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_2d), | |
output_type="np", | |
) | |
input_np_4d = self.to_np(self.dummy_mask) | |
input_np_3d = input_np_4d.squeeze(0) | |
input_np_3d_1 = input_np_4d.squeeze(-1) | |
input_np_2d = input_np_3d.squeeze(-1) | |
out_np_4d = image_processor.postprocess( | |
image_processor.preprocess(input_np_4d), | |
output_type="np", | |
) | |
out_np_3d = image_processor.postprocess( | |
image_processor.preprocess(input_np_3d), | |
output_type="np", | |
) | |
out_np_3d_1 = image_processor.postprocess( | |
image_processor.preprocess(input_np_3d_1), | |
output_type="np", | |
) | |
out_np_2d = image_processor.postprocess( | |
image_processor.preprocess(input_np_2d), | |
output_type="np", | |
) | |
assert np.abs(out_pt_4d - out_pt_3d).max() == 0 | |
assert np.abs(out_pt_4d - out_pt_2d).max() == 0 | |
assert np.abs(out_np_4d - out_np_3d).max() == 0 | |
assert np.abs(out_np_4d - out_np_3d_1).max() == 0 | |
assert np.abs(out_np_4d - out_np_2d).max() == 0 | |
def test_preprocess_input_mask_list(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) | |
input_pt_4d = self.dummy_mask | |
input_pt_3d = input_pt_4d.squeeze(0) | |
input_pt_2d = input_pt_3d.squeeze(0) | |
inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d] | |
inputs_pt_list = [[input_pt] for input_pt in inputs_pt] | |
for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list): | |
out_pt = image_processor.postprocess( | |
image_processor.preprocess(input_pt), | |
output_type="np", | |
) | |
out_pt_list = image_processor.postprocess( | |
image_processor.preprocess(input_pt_list), | |
output_type="np", | |
) | |
assert np.abs(out_pt - out_pt_list).max() < 1e-6 | |
input_np_4d = self.to_np(self.dummy_mask) | |
input_np_3d = input_np_4d.squeeze(0) | |
input_np_2d = input_np_3d.squeeze(-1) | |
inputs_np = [input_np_4d, input_np_3d, input_np_2d] | |
inputs_np_list = [[input_np] for input_np in inputs_np] | |
for input_np, input_np_list in zip(inputs_np, inputs_np_list): | |
out_np = image_processor.postprocess( | |
image_processor.preprocess(input_np), | |
output_type="np", | |
) | |
out_np_list = image_processor.postprocess( | |
image_processor.preprocess(input_np_list), | |
output_type="np", | |
) | |
assert np.abs(out_np - out_np_list).max() < 1e-6 | |
def test_preprocess_input_mask_3d_batch(self): | |
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) | |
# create a dummy mask input with batch_size 2 | |
dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0) | |
# squeeze out the channel dimension | |
input_pt_3d = dummy_mask_batch.squeeze(1) | |
input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1) | |
input_pt_3d_list = list(input_pt_3d) | |
input_np_3d_list = list(input_np_3d) | |
out_pt_3d = image_processor.postprocess( | |
image_processor.preprocess(input_pt_3d), | |
output_type="np", | |
) | |
out_pt_3d_list = image_processor.postprocess( | |
image_processor.preprocess(input_pt_3d_list), | |
output_type="np", | |
) | |
assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6 | |
out_np_3d = image_processor.postprocess( | |
image_processor.preprocess(input_np_3d), | |
output_type="np", | |
) | |
out_np_3d_list = image_processor.postprocess( | |
image_processor.preprocess(input_np_3d_list), | |
output_type="np", | |
) | |
assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6 | |
def test_vae_image_processor_resize_pt(self): | |
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) | |
input_pt = self.dummy_sample | |
b, c, h, w = input_pt.shape | |
scale = 2 | |
out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale) | |
exp_pt_shape = (b, c, h // scale, w // scale) | |
assert ( | |
out_pt.shape == exp_pt_shape | |
), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'." | |
def test_vae_image_processor_resize_np(self): | |
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) | |
input_pt = self.dummy_sample | |
b, c, h, w = input_pt.shape | |
scale = 2 | |
input_np = self.to_np(input_pt) | |
out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale) | |
exp_np_shape = (b, h // scale, w // scale, c) | |
assert ( | |
out_np.shape == exp_np_shape | |
), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'." | |