Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import PIL.Image | |
import torch | |
from parameterized import parameterized | |
from diffusers.video_processor import VideoProcessor | |
np.random.seed(0) | |
torch.manual_seed(0) | |
class VideoProcessorTest(unittest.TestCase): | |
def get_dummy_sample(self, input_type): | |
batch_size = 1 | |
num_frames = 5 | |
num_channels = 3 | |
height = 8 | |
width = 8 | |
def generate_image(): | |
return PIL.Image.fromarray(np.random.randint(0, 256, size=(height, width, num_channels)).astype("uint8")) | |
def generate_4d_array(): | |
return np.random.rand(num_frames, height, width, num_channels) | |
def generate_5d_array(): | |
return np.random.rand(batch_size, num_frames, height, width, num_channels) | |
def generate_4d_tensor(): | |
return torch.rand(num_frames, num_channels, height, width) | |
def generate_5d_tensor(): | |
return torch.rand(batch_size, num_frames, num_channels, height, width) | |
if input_type == "list_images": | |
sample = [generate_image() for _ in range(num_frames)] | |
elif input_type == "list_list_images": | |
sample = [[generate_image() for _ in range(num_frames)] for _ in range(num_frames)] | |
elif input_type == "list_4d_np": | |
sample = [generate_4d_array() for _ in range(num_frames)] | |
elif input_type == "list_list_4d_np": | |
sample = [[generate_4d_array() for _ in range(num_frames)] for _ in range(num_frames)] | |
elif input_type == "list_5d_np": | |
sample = [generate_5d_array() for _ in range(num_frames)] | |
elif input_type == "5d_np": | |
sample = generate_5d_array() | |
elif input_type == "list_4d_pt": | |
sample = [generate_4d_tensor() for _ in range(num_frames)] | |
elif input_type == "list_list_4d_pt": | |
sample = [[generate_4d_tensor() for _ in range(num_frames)] for _ in range(num_frames)] | |
elif input_type == "list_5d_pt": | |
sample = [generate_5d_tensor() for _ in range(num_frames)] | |
elif input_type == "5d_pt": | |
sample = generate_5d_tensor() | |
return sample | |
def to_np(self, video): | |
# List of images. | |
if isinstance(video[0], PIL.Image.Image): | |
video = np.stack([np.array(i) for i in video], axis=0) | |
# List of list of images. | |
elif isinstance(video, list) and isinstance(video[0][0], PIL.Image.Image): | |
frames = [] | |
for vid in video: | |
all_current_frames = np.stack([np.array(i) for i in vid], axis=0) | |
frames.append(all_current_frames) | |
video = np.stack([np.array(frame) for frame in frames], axis=0) | |
# List of 4d/5d {ndarrays, torch tensors}. | |
elif isinstance(video, list) and isinstance(video[0], (torch.Tensor, np.ndarray)): | |
if isinstance(video[0], np.ndarray): | |
video = np.stack(video, axis=0) if video[0].ndim == 4 else np.concatenate(video, axis=0) | |
else: | |
if video[0].ndim == 4: | |
video = np.stack([i.cpu().numpy().transpose(0, 2, 3, 1) for i in video], axis=0) | |
elif video[0].ndim == 5: | |
video = np.concatenate([i.cpu().numpy().transpose(0, 1, 3, 4, 2) for i in video], axis=0) | |
# List of list of 4d/5d {ndarrays, torch tensors}. | |
elif ( | |
isinstance(video, list) | |
and isinstance(video[0], list) | |
and isinstance(video[0][0], (torch.Tensor, np.ndarray)) | |
): | |
all_frames = [] | |
for list_of_videos in video: | |
temp_frames = [] | |
for vid in list_of_videos: | |
if vid.ndim == 4: | |
current_vid_frames = np.stack( | |
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(1, 2, 0) for i in vid], | |
axis=0, | |
) | |
elif vid.ndim == 5: | |
current_vid_frames = np.concatenate( | |
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(0, 2, 3, 1) for i in vid], | |
axis=0, | |
) | |
temp_frames.append(current_vid_frames) | |
temp_frames = np.stack(temp_frames, axis=0) | |
all_frames.append(temp_frames) | |
video = np.concatenate(all_frames, axis=0) | |
# Just 5d {ndarrays, torch tensors}. | |
elif isinstance(video, (torch.Tensor, np.ndarray)) and video.ndim == 5: | |
video = video if isinstance(video, np.ndarray) else video.cpu().numpy().transpose(0, 1, 3, 4, 2) | |
return video | |
def test_video_processor_pil(self, input_type): | |
video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
input = self.get_dummy_sample(input_type=input_type) | |
for output_type in ["pt", "np", "pil"]: | |
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
out_np = self.to_np(out) | |
input_np = self.to_np(input).astype("float32") / 255.0 if output_type != "pil" else self.to_np(input) | |
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |
def test_video_processor_np(self, input_type): | |
video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
input = self.get_dummy_sample(input_type=input_type) | |
for output_type in ["pt", "np", "pil"]: | |
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
out_np = self.to_np(out) | |
input_np = ( | |
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) | |
) | |
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |
def test_video_processor_pt(self, input_type): | |
video_processor = VideoProcessor(do_resize=False, do_normalize=True) | |
input = self.get_dummy_sample(input_type=input_type) | |
for output_type in ["pt", "np", "pil"]: | |
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) | |
out_np = self.to_np(out) | |
input_np = ( | |
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) | |
) | |
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" | |