Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from diffusers import VQDiffusionScheduler | |
from .test_schedulers import SchedulerCommonTest | |
class VQDiffusionSchedulerTest(SchedulerCommonTest): | |
scheduler_classes = (VQDiffusionScheduler,) | |
def get_scheduler_config(self, **kwargs): | |
config = { | |
"num_vec_classes": 4097, | |
"num_train_timesteps": 100, | |
} | |
config.update(**kwargs) | |
return config | |
def dummy_sample(self, num_vec_classes): | |
batch_size = 4 | |
height = 8 | |
width = 8 | |
sample = torch.randint(0, num_vec_classes, (batch_size, height * width)) | |
return sample | |
def dummy_sample_deter(self): | |
assert False | |
def dummy_model(self, num_vec_classes): | |
def model(sample, t, *args): | |
batch_size, num_latent_pixels = sample.shape | |
logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels)) | |
return_value = F.log_softmax(logits.double(), dim=1).float() | |
return return_value | |
return model | |
def test_timesteps(self): | |
for timesteps in [2, 5, 100, 1000]: | |
self.check_over_configs(num_train_timesteps=timesteps) | |
def test_num_vec_classes(self): | |
for num_vec_classes in [5, 100, 1000, 4000]: | |
self.check_over_configs(num_vec_classes=num_vec_classes) | |
def test_time_indices(self): | |
for t in [0, 50, 99]: | |
self.check_over_forward(time_step=t) | |
def test_add_noise_device(self): | |
pass | |