Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import json | |
import os | |
import tempfile | |
import unittest | |
import uuid | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import torch | |
from huggingface_hub import delete_repo | |
import diffusers | |
from diffusers import ( | |
CMStochasticIterativeScheduler, | |
DDIMScheduler, | |
DEISMultistepScheduler, | |
DiffusionPipeline, | |
EDMEulerScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
IPNDMScheduler, | |
LMSDiscreteScheduler, | |
UniPCMultistepScheduler, | |
VQDiffusionScheduler, | |
) | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from diffusers.utils import logging | |
from diffusers.utils.testing_utils import CaptureLogger, torch_device | |
from ..others.test_utils import TOKEN, USER, is_staging_test | |
torch.backends.cuda.matmul.allow_tf32 = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class SchedulerObject(SchedulerMixin, ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
e=[1, 3], | |
): | |
pass | |
class SchedulerObject2(SchedulerMixin, ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
f=[1, 3], | |
): | |
pass | |
class SchedulerObject3(SchedulerMixin, ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
e=[1, 3], | |
f=[1, 3], | |
): | |
pass | |
class SchedulerBaseTests(unittest.TestCase): | |
def test_save_load_from_different_config(self): | |
obj = SchedulerObject() | |
# mock add obj class to `diffusers` | |
setattr(diffusers, "SchedulerObject", SchedulerObject) | |
logger = logging.get_logger("diffusers.configuration_utils") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
obj.save_config(tmpdirname) | |
with CaptureLogger(logger) as cap_logger_1: | |
config = SchedulerObject2.load_config(tmpdirname) | |
new_obj_1 = SchedulerObject2.from_config(config) | |
# now save a config parameter that is not expected | |
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
data = json.load(f) | |
data["unexpected"] = True | |
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
json.dump(data, f) | |
with CaptureLogger(logger) as cap_logger_2: | |
config = SchedulerObject.load_config(tmpdirname) | |
new_obj_2 = SchedulerObject.from_config(config) | |
with CaptureLogger(logger) as cap_logger_3: | |
config = SchedulerObject2.load_config(tmpdirname) | |
new_obj_3 = SchedulerObject2.from_config(config) | |
assert new_obj_1.__class__ == SchedulerObject2 | |
assert new_obj_2.__class__ == SchedulerObject | |
assert new_obj_3.__class__ == SchedulerObject2 | |
assert cap_logger_1.out == "" | |
assert ( | |
cap_logger_2.out | |
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
" will" | |
" be ignored. Please verify your config.json configuration file.\n" | |
) | |
assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out | |
def test_save_load_compatible_schedulers(self): | |
SchedulerObject2._compatibles = ["SchedulerObject"] | |
SchedulerObject._compatibles = ["SchedulerObject2"] | |
obj = SchedulerObject() | |
# mock add obj class to `diffusers` | |
setattr(diffusers, "SchedulerObject", SchedulerObject) | |
setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
logger = logging.get_logger("diffusers.configuration_utils") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
obj.save_config(tmpdirname) | |
# now save a config parameter that is expected by another class, but not origin class | |
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
data = json.load(f) | |
data["f"] = [0, 0] | |
data["unexpected"] = True | |
with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
json.dump(data, f) | |
with CaptureLogger(logger) as cap_logger: | |
config = SchedulerObject.load_config(tmpdirname) | |
new_obj = SchedulerObject.from_config(config) | |
assert new_obj.__class__ == SchedulerObject | |
assert ( | |
cap_logger.out | |
== "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
" will" | |
" be ignored. Please verify your config.json configuration file.\n" | |
) | |
def test_save_load_from_different_config_comp_schedulers(self): | |
SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] | |
SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] | |
SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] | |
obj = SchedulerObject() | |
# mock add obj class to `diffusers` | |
setattr(diffusers, "SchedulerObject", SchedulerObject) | |
setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
setattr(diffusers, "SchedulerObject3", SchedulerObject3) | |
logger = logging.get_logger("diffusers.configuration_utils") | |
logger.setLevel(diffusers.logging.INFO) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
obj.save_config(tmpdirname) | |
with CaptureLogger(logger) as cap_logger_1: | |
config = SchedulerObject.load_config(tmpdirname) | |
new_obj_1 = SchedulerObject.from_config(config) | |
with CaptureLogger(logger) as cap_logger_2: | |
config = SchedulerObject2.load_config(tmpdirname) | |
new_obj_2 = SchedulerObject2.from_config(config) | |
with CaptureLogger(logger) as cap_logger_3: | |
config = SchedulerObject3.load_config(tmpdirname) | |
new_obj_3 = SchedulerObject3.from_config(config) | |
assert new_obj_1.__class__ == SchedulerObject | |
assert new_obj_2.__class__ == SchedulerObject2 | |
assert new_obj_3.__class__ == SchedulerObject3 | |
assert cap_logger_1.out == "" | |
assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
def test_default_arguments_not_in_config(self): | |
pipe = DiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | |
) | |
assert pipe.scheduler.__class__ == DDIMScheduler | |
# Default for DDIMScheduler | |
assert pipe.scheduler.config.timestep_spacing == "leading" | |
# Switch to a different one, verify we use the default for that class | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
assert pipe.scheduler.config.timestep_spacing == "linspace" | |
# Override with kwargs | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
assert pipe.scheduler.config.timestep_spacing == "trailing" | |
# Verify overridden kwargs stick | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
assert pipe.scheduler.config.timestep_spacing == "trailing" | |
# And stick | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
assert pipe.scheduler.config.timestep_spacing == "trailing" | |
def test_default_solver_type_after_switch(self): | |
pipe = DiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | |
) | |
assert pipe.scheduler.__class__ == DDIMScheduler | |
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) | |
assert pipe.scheduler.config.solver_type == "logrho" | |
# Switch to UniPC, verify the solver is the default | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
assert pipe.scheduler.config.solver_type == "bh2" | |
class SchedulerCommonTest(unittest.TestCase): | |
scheduler_classes = () | |
forward_default_kwargs = () | |
def default_num_inference_steps(self): | |
return 50 | |
def default_timestep(self): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | |
try: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = self.scheduler_classes[0](**scheduler_config) | |
scheduler.set_timesteps(num_inference_steps) | |
timestep = scheduler.timesteps[0] | |
except NotImplementedError: | |
logger.warning( | |
f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | |
f" `default_timestep` will be set to the default value of 1." | |
) | |
timestep = 1 | |
return timestep | |
# NOTE: currently taking the convention that default_timestep > default_timestep_2 (alternatively, | |
# default_timestep comes earlier in the timestep schedule than default_timestep_2) | |
def default_timestep_2(self): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | |
try: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = self.scheduler_classes[0](**scheduler_config) | |
scheduler.set_timesteps(num_inference_steps) | |
if len(scheduler.timesteps) >= 2: | |
timestep_2 = scheduler.timesteps[1] | |
else: | |
logger.warning( | |
f"Using num_inference_steps from the scheduler testing class's default config leads to a timestep" | |
f" scheduler of length {len(scheduler.timesteps)} < 2. The default `default_timestep_2` value of 0" | |
f" will be used." | |
) | |
timestep_2 = 0 | |
except NotImplementedError: | |
logger.warning( | |
f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | |
f" `default_timestep_2` will be set to the default value of 0." | |
) | |
timestep_2 = 0 | |
return timestep_2 | |
def dummy_sample(self): | |
batch_size = 4 | |
num_channels = 3 | |
height = 8 | |
width = 8 | |
sample = torch.rand((batch_size, num_channels, height, width)) | |
return sample | |
def dummy_noise_deter(self): | |
batch_size = 4 | |
num_channels = 3 | |
height = 8 | |
width = 8 | |
num_elems = batch_size * num_channels * height * width | |
sample = torch.arange(num_elems).flip(-1) | |
sample = sample.reshape(num_channels, height, width, batch_size) | |
sample = sample / num_elems | |
sample = sample.permute(3, 0, 1, 2) | |
return sample | |
def dummy_sample_deter(self): | |
batch_size = 4 | |
num_channels = 3 | |
height = 8 | |
width = 8 | |
num_elems = batch_size * num_channels * height * width | |
sample = torch.arange(num_elems) | |
sample = sample.reshape(num_channels, height, width, batch_size) | |
sample = sample / num_elems | |
sample = sample.permute(3, 0, 1, 2) | |
return sample | |
def get_scheduler_config(self): | |
raise NotImplementedError | |
def dummy_model(self): | |
def model(sample, t, *args): | |
# if t is a tensor, match the number of dimensions of sample | |
if isinstance(t, torch.Tensor): | |
num_dims = len(sample.shape) | |
# pad t with 1s to match num_dims | |
t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype) | |
return sample * t / (t + 1) | |
return model | |
def check_over_configs(self, time_step=0, **config): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", None) | |
time_step = time_step if time_step is not None else self.default_timestep | |
for scheduler_class in self.scheduler_classes: | |
# TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default | |
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
time_step = float(time_step) | |
scheduler_config = self.get_scheduler_config(**config) | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
time_step = scaled_sigma_max | |
if scheduler_class == EDMEulerScheduler: | |
time_step = scheduler.timesteps[-1] | |
if scheduler_class == VQDiffusionScheduler: | |
num_vec_classes = scheduler_config["num_vec_classes"] | |
sample = self.dummy_sample(num_vec_classes) | |
model = self.dummy_model(num_vec_classes) | |
residual = model(sample, time_step) | |
else: | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_config(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
new_scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
# Make sure `scale_model_input` is invoked to prevent a warning | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
_ = scheduler.scale_model_input(sample, scaled_sigma_max) | |
_ = new_scheduler.scale_model_input(sample, scaled_sigma_max) | |
elif scheduler_class != VQDiffusionScheduler: | |
_ = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
_ = new_scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
# Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
def check_over_forward(self, time_step=0, **forward_kwargs): | |
kwargs = dict(self.forward_default_kwargs) | |
kwargs.update(forward_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", None) | |
time_step = time_step if time_step is not None else self.default_timestep | |
for scheduler_class in self.scheduler_classes: | |
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
time_step = float(time_step) | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class == VQDiffusionScheduler: | |
num_vec_classes = scheduler_config["num_vec_classes"] | |
sample = self.dummy_sample(num_vec_classes) | |
model = self.dummy_model(num_vec_classes) | |
residual = model(sample, time_step) | |
else: | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_config(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
new_scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
def test_from_save_pretrained(self): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
for scheduler_class in self.scheduler_classes: | |
timestep = self.default_timestep | |
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
timestep = float(timestep) | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
if scheduler_class == VQDiffusionScheduler: | |
num_vec_classes = scheduler_config["num_vec_classes"] | |
sample = self.dummy_sample(num_vec_classes) | |
model = self.dummy_model(num_vec_classes) | |
residual = model(sample, timestep) | |
else: | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_config(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
new_scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
def test_compatibles(self): | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
assert all(c is not None for c in scheduler.compatibles) | |
for comp_scheduler_cls in scheduler.compatibles: | |
comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) | |
assert comp_scheduler is not None | |
new_scheduler = scheduler_class.from_config(comp_scheduler.config) | |
new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} | |
scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} | |
# make sure that configs are essentially identical | |
assert new_scheduler_config == dict(scheduler.config) | |
# make sure that only differences are for configs that are not in init | |
init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() | |
assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() | |
def test_from_pretrained(self): | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_pretrained(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
# `_use_default_values` should not exist for just saved & loaded scheduler | |
scheduler_config = dict(scheduler.config) | |
del scheduler_config["_use_default_values"] | |
assert scheduler_config == new_scheduler.config | |
def test_step_shape(self): | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
timestep_0 = self.default_timestep | |
timestep_1 = self.default_timestep_2 | |
for scheduler_class in self.scheduler_classes: | |
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
timestep_0 = float(timestep_0) | |
timestep_1 = float(timestep_1) | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class == VQDiffusionScheduler: | |
num_vec_classes = scheduler_config["num_vec_classes"] | |
sample = self.dummy_sample(num_vec_classes) | |
model = self.dummy_model(num_vec_classes) | |
residual = model(sample, timestep_0) | |
else: | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample | |
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample | |
self.assertEqual(output_0.shape, sample.shape) | |
self.assertEqual(output_0.shape, output_1.shape) | |
def test_scheduler_outputs_equivalence(self): | |
def set_nan_tensor_to_zero(t): | |
t[t != t] = 0 | |
return t | |
def recursive_check(tuple_object, dict_object): | |
if isinstance(tuple_object, (List, Tuple)): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif isinstance(tuple_object, Dict): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif tuple_object is None: | |
return | |
else: | |
self.assertTrue( | |
torch.allclose( | |
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
), | |
msg=( | |
"Tuple and dict output are not equal. Difference:" | |
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
), | |
) | |
kwargs = dict(self.forward_default_kwargs) | |
num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | |
timestep = self.default_timestep | |
if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: | |
timestep = 1 | |
for scheduler_class in self.scheduler_classes: | |
if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
timestep = float(timestep) | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
if scheduler_class == VQDiffusionScheduler: | |
num_vec_classes = scheduler_config["num_vec_classes"] | |
sample = self.dummy_sample(num_vec_classes) | |
model = self.dummy_model(num_vec_classes) | |
residual = model(sample, timestep) | |
else: | |
sample = self.dummy_sample | |
residual = 0.1 * sample | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) | |
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
scheduler.set_timesteps(num_inference_steps) | |
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
kwargs["num_inference_steps"] = num_inference_steps | |
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
kwargs["generator"] = torch.manual_seed(0) | |
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) | |
recursive_check(outputs_tuple, outputs_dict) | |
def test_scheduler_public_api(self): | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
if scheduler_class != VQDiffusionScheduler: | |
self.assertTrue( | |
hasattr(scheduler, "init_noise_sigma"), | |
f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", | |
) | |
self.assertTrue( | |
hasattr(scheduler, "scale_model_input"), | |
( | |
f"{scheduler_class} does not implement a required class method `scale_model_input(sample," | |
" timestep)`" | |
), | |
) | |
self.assertTrue( | |
hasattr(scheduler, "step"), | |
f"{scheduler_class} does not implement a required class method `step(...)`", | |
) | |
if scheduler_class != VQDiffusionScheduler: | |
sample = self.dummy_sample | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | |
elif scheduler_class == EDMEulerScheduler: | |
scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
else: | |
scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
self.assertEqual(sample.shape, scaled_sample.shape) | |
def test_add_noise_device(self): | |
for scheduler_class in self.scheduler_classes: | |
if scheduler_class == IPNDMScheduler: | |
continue | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
scheduler.set_timesteps(self.default_num_inference_steps) | |
sample = self.dummy_sample.to(torch_device) | |
if scheduler_class == CMStochasticIterativeScheduler: | |
# Get valid timestep based on sigma_max, which should always be in timestep schedule. | |
scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | |
scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | |
elif scheduler_class == EDMEulerScheduler: | |
scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | |
else: | |
scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
self.assertEqual(sample.shape, scaled_sample.shape) | |
noise = torch.randn_like(scaled_sample).to(torch_device) | |
t = scheduler.timesteps[5][None] | |
noised = scheduler.add_noise(scaled_sample, noise, t) | |
self.assertEqual(noised.shape, scaled_sample.shape) | |
def test_deprecated_kwargs(self): | |
for scheduler_class in self.scheduler_classes: | |
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters | |
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 | |
if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
raise ValueError( | |
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" | |
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" | |
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
" [<deprecated_argument>]`" | |
) | |
if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
raise ValueError( | |
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" | |
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" | |
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" | |
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" | |
) | |
def test_trained_betas(self): | |
for scheduler_class in self.scheduler_classes: | |
if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler): | |
continue | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3])) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
scheduler.save_pretrained(tmpdirname) | |
new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
assert scheduler.betas.tolist() == new_scheduler.betas.tolist() | |
def test_getattr_is_correct(self): | |
for scheduler_class in self.scheduler_classes: | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
# save some things to test | |
scheduler.dummy_attribute = 5 | |
scheduler.register_to_config(test_attribute=5) | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
assert hasattr(scheduler, "dummy_attribute") | |
assert getattr(scheduler, "dummy_attribute") == 5 | |
assert scheduler.dummy_attribute == 5 | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
logger = logging.get_logger("diffusers.schedulers.scheduling_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
assert hasattr(scheduler, "save_pretrained") | |
fn = scheduler.save_pretrained | |
fn_1 = getattr(scheduler, "save_pretrained") | |
assert fn == fn_1 | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
# warning should be thrown | |
with self.assertWarns(FutureWarning): | |
assert scheduler.test_attribute == 5 | |
with self.assertWarns(FutureWarning): | |
assert getattr(scheduler, "test_attribute") == 5 | |
with self.assertRaises(AttributeError) as error: | |
scheduler.does_not_exist | |
assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'" | |
class SchedulerPushToHubTester(unittest.TestCase): | |
identifier = uuid.uuid4() | |
repo_id = f"test-scheduler-{identifier}" | |
org_repo_id = f"valid_org/{repo_id}-org" | |
def test_push_to_hub(self): | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
scheduler.push_to_hub(self.repo_id, token=TOKEN) | |
scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | |
assert type(scheduler) == type(scheduler_loaded) | |
# Reset repo | |
delete_repo(token=TOKEN, repo_id=self.repo_id) | |
# Push to hub via save_config | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN) | |
scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | |
assert type(scheduler) == type(scheduler_loaded) | |
# Reset repo | |
delete_repo(token=TOKEN, repo_id=self.repo_id) | |
def test_push_to_hub_in_organization(self): | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
scheduler.push_to_hub(self.org_repo_id, token=TOKEN) | |
scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | |
assert type(scheduler) == type(scheduler_loaded) | |
# Reset repo | |
delete_repo(token=TOKEN, repo_id=self.org_repo_id) | |
# Push to hub via save_config | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN) | |
scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | |
assert type(scheduler) == type(scheduler_loaded) | |
# Reset repo | |
delete_repo(token=TOKEN, repo_id=self.org_repo_id) | |