BleachNick's picture
upload required packages
87d40d2
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
BITS = 8
# convert to bit representations and back taken from https://github.com/lucidrains/bit-diffusion/blob/main/bit_diffusion/bit_diffusion.py
def decimal_to_bits(x, bits=BITS):
"""expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1"""
device = x.device
x = (x * 255).int().clamp(0, 255)
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device)
mask = rearrange(mask, "d -> d 1 1")
x = rearrange(x, "b c h w -> b c 1 h w")
bits = ((x & mask) != 0).float()
bits = rearrange(bits, "b c d h w -> b (c d) h w")
bits = bits * 2 - 1
return bits
def bits_to_decimal(x, bits=BITS):
"""expects bits from -1 to 1, outputs image tensor from 0 to 1"""
device = x.device
x = (x > 0).int()
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32)
mask = rearrange(mask, "d -> d 1 1")
x = rearrange(x, "b (c d) h w -> b c d h w", d=8)
dec = reduce(x * mask, "b c d h w -> b c h w", "sum")
return (dec / 255).clamp(0.0, 1.0)
# modified scheduler step functions for clamping the predicted x_0 between -bit_scale and +bit_scale
def ddim_bit_scheduler_step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = True,
generator=None,
return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): TODO
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 4. Clip "predicted x_0"
scale = self.bit_scale
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = self._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
device = model_output.device if torch.is_tensor(model_output) else "cpu"
noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device)
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def ddpm_bit_scheduler_step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
prediction_type="epsilon",
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
current instance of sample being created by diffusion process.
prediction_type (`str`, default `epsilon`):
indicates whether the model predicts the noise (epsilon), or the samples (`sample`).
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
t = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif prediction_type == "sample":
pred_original_sample = model_output
else:
raise ValueError(f"Unsupported prediction_type {prediction_type}.")
# 3. Clip "predicted x_0"
scale = self.bit_scale
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
variance = 0
if t > 0:
noise = torch.randn(
model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
).to(model_output.device)
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
pred_prev_sample = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
class BitDiffusion(DiffusionPipeline):
def __init__(
self,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
bit_scale: Optional[float] = 1.0,
):
super().__init__()
self.bit_scale = bit_scale
self.scheduler.step = (
ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step
)
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
height: Optional[int] = 256,
width: Optional[int] = 256,
num_inference_steps: Optional[int] = 50,
generator: Optional[torch.Generator] = None,
batch_size: Optional[int] = 1,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
latents = torch.randn(
(batch_size, self.unet.config.in_channels, height, width),
generator=generator,
)
latents = decimal_to_bits(latents) * self.bit_scale
latents = latents.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# predict the noise residual
noise_pred = self.unet(latents, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
image = bits_to_decimal(latents)
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)