Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
from typing import List, Optional, Union | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torchvision import transforms | |
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
class MakeCutouts(nn.Module): | |
def __init__(self, cut_size, cut_power=1.0): | |
super().__init__() | |
self.cut_size = cut_size | |
self.cut_power = cut_power | |
def forward(self, pixel_values, num_cutouts): | |
sideY, sideX = pixel_values.shape[2:4] | |
max_size = min(sideX, sideY) | |
min_size = min(sideX, sideY, self.cut_size) | |
cutouts = [] | |
for _ in range(num_cutouts): | |
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) | |
offsetx = torch.randint(0, sideX - size + 1, ()) | |
offsety = torch.randint(0, sideY - size + 1, ()) | |
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] | |
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) | |
return torch.cat(cutouts) | |
def spherical_dist_loss(x, y): | |
x = F.normalize(x, dim=-1) | |
y = F.normalize(y, dim=-1) | |
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) | |
def set_requires_grad(model, value): | |
for param in model.parameters(): | |
param.requires_grad = value | |
class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin): | |
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 | |
- https://github.com/Jack000/glid-3-xl | |
- https://github.dev/crowsonkb/k-diffusion | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
clip_model: CLIPModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], | |
feature_extractor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
clip_model=clip_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
) | |
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) | |
self.cut_out_size = ( | |
feature_extractor.size | |
if isinstance(feature_extractor.size, int) | |
else feature_extractor.size["shortest_edge"] | |
) | |
self.make_cutouts = MakeCutouts(self.cut_out_size) | |
set_requires_grad(self.text_encoder, False) | |
set_requires_grad(self.clip_model, False) | |
def freeze_vae(self): | |
set_requires_grad(self.vae, False) | |
def unfreeze_vae(self): | |
set_requires_grad(self.vae, True) | |
def freeze_unet(self): | |
set_requires_grad(self.unet, False) | |
def unfreeze_unet(self): | |
set_requires_grad(self.unet, True) | |
def cond_fn( | |
self, | |
latents, | |
timestep, | |
index, | |
text_embeddings, | |
noise_pred_original, | |
text_embeddings_clip, | |
clip_guidance_scale, | |
num_cutouts, | |
use_cutouts=True, | |
): | |
latents = latents.detach().requires_grad_() | |
latent_model_input = self.scheduler.scale_model_input(latents, timestep) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample | |
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
# compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) | |
fac = torch.sqrt(beta_prod_t) | |
sample = pred_original_sample * (fac) + latents * (1 - fac) | |
elif isinstance(self.scheduler, LMSDiscreteScheduler): | |
sigma = self.scheduler.sigmas[index] | |
sample = latents - sigma * noise_pred | |
else: | |
raise ValueError(f"scheduler type {type(self.scheduler)} not supported") | |
sample = 1 / self.vae.config.scaling_factor * sample | |
image = self.vae.decode(sample).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
if use_cutouts: | |
image = self.make_cutouts(image, num_cutouts) | |
else: | |
image = transforms.Resize(self.cut_out_size)(image) | |
image = self.normalize(image).to(latents.dtype) | |
image_embeddings_clip = self.clip_model.get_image_features(image) | |
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | |
if use_cutouts: | |
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) | |
dists = dists.view([num_cutouts, sample.shape[0], -1]) | |
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale | |
else: | |
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale | |
grads = -torch.autograd.grad(loss, latents)[0] | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = latents.detach() + grads * (sigma**2) | |
noise_pred = noise_pred_original | |
else: | |
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads | |
return noise_pred, latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
clip_guidance_scale: Optional[float] = 100, | |
clip_prompt: Optional[Union[str, List[str]]] = None, | |
num_cutouts: Optional[int] = 4, | |
use_cutouts: Optional[bool] = True, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
): | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
# get prompt text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
# duplicate text embeddings for each generation per prompt | |
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | |
if clip_guidance_scale > 0: | |
if clip_prompt is not None: | |
clip_text_input = self.tokenizer( | |
clip_prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
).input_ids.to(self.device) | |
else: | |
clip_text_input = text_input.input_ids.to(self.device) | |
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) | |
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | |
# duplicate text embeddings clip for each generation per prompt | |
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# duplicate unconditional embeddings for each generation per prompt | |
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# get the initial random noise unless the user supplied it | |
# Unlike in other pipelines, latents need to be generated in the target device | |
# for 1-to-1 results reproducibility with the CompVis implementation. | |
# However this currently doesn't work in `mps`. | |
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) | |
latents_dtype = text_embeddings.dtype | |
if latents is None: | |
if self.device.type == "mps": | |
# randn does not work reproducibly on mps | |
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( | |
self.device | |
) | |
else: | |
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
latents = latents.to(self.device) | |
# set timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
# Some schedulers like PNDM have timesteps as arrays | |
# It's more optimized to move all timesteps to correct device beforehand | |
timesteps_tensor = self.scheduler.timesteps.to(self.device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform classifier free guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# perform clip guidance | |
if clip_guidance_scale > 0: | |
text_embeddings_for_guidance = ( | |
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings | |
) | |
noise_pred, latents = self.cond_fn( | |
latents, | |
t, | |
i, | |
text_embeddings_for_guidance, | |
noise_pred, | |
text_embeddings_clip, | |
clip_guidance_scale, | |
num_cutouts, | |
use_cutouts, | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# scale and decode the image latents with vae | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, None) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |