Spaces:
Running
on
Zero
Running
on
Zero
from typing import Union | |
import torch | |
from PIL import Image | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DiffusionPipeline, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
) | |
class MagicMixPipeline(DiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], | |
): | |
super().__init__() | |
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) | |
# convert PIL image to latents | |
def encode(self, img): | |
with torch.no_grad(): | |
latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) | |
latent = 0.18215 * latent.latent_dist.sample() | |
return latent | |
# convert latents to PIL image | |
def decode(self, latent): | |
latent = (1 / 0.18215) * latent | |
with torch.no_grad(): | |
img = self.vae.decode(latent).sample | |
img = (img / 2 + 0.5).clamp(0, 1) | |
img = img.detach().cpu().permute(0, 2, 3, 1).numpy() | |
img = (img * 255).round().astype("uint8") | |
return Image.fromarray(img[0]) | |
# convert prompt into text embeddings, also unconditional embeddings | |
def prep_text(self, prompt): | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
uncond_input = self.tokenizer( | |
"", | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
return torch.cat([uncond_embedding, text_embedding]) | |
def __call__( | |
self, | |
img: Image.Image, | |
prompt: str, | |
kmin: float = 0.3, | |
kmax: float = 0.6, | |
mix_factor: float = 0.5, | |
seed: int = 42, | |
steps: int = 50, | |
guidance_scale: float = 7.5, | |
) -> Image.Image: | |
tmin = steps - int(kmin * steps) | |
tmax = steps - int(kmax * steps) | |
text_embeddings = self.prep_text(prompt) | |
self.scheduler.set_timesteps(steps) | |
width, height = img.size | |
encoded = self.encode(img) | |
torch.manual_seed(seed) | |
noise = torch.randn( | |
(1, self.unet.config.in_channels, height // 8, width // 8), | |
).to(self.device) | |
latents = self.scheduler.add_noise( | |
encoded, | |
noise, | |
timesteps=self.scheduler.timesteps[tmax], | |
) | |
input = torch.cat([latents] * 2) | |
input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) | |
with torch.no_grad(): | |
pred = self.unet( | |
input, | |
self.scheduler.timesteps[tmax], | |
encoder_hidden_states=text_embeddings, | |
).sample | |
pred_uncond, pred_text = pred.chunk(2) | |
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | |
latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample | |
for i, t in enumerate(tqdm(self.scheduler.timesteps)): | |
if i > tmax: | |
if i < tmin: # layout generation phase | |
orig_latents = self.scheduler.add_noise( | |
encoded, | |
noise, | |
timesteps=t, | |
) | |
input = ( | |
(mix_factor * latents) + (1 - mix_factor) * orig_latents | |
) # interpolating between layout noise and conditionally generated noise to preserve layout sematics | |
input = torch.cat([input] * 2) | |
else: # content generation phase | |
input = torch.cat([latents] * 2) | |
input = self.scheduler.scale_model_input(input, t) | |
with torch.no_grad(): | |
pred = self.unet( | |
input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
).sample | |
pred_uncond, pred_text = pred.chunk(2) | |
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) | |
latents = self.scheduler.step(pred, t, latents).prev_sample | |
return self.decode(latents) | |