Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 FABRIC authors and the HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Union | |
import torch | |
from packaging import version | |
from PIL import Image | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.attention_processor import LoRAAttnProcessor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
deprecate, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import DiffusionPipeline | |
>>> import torch | |
>>> model_id = "dreamlike-art/dreamlike-photoreal-2.0" | |
>>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric") | |
>>> pipe = pipe.to("cuda") | |
>>> prompt = "a giant standing in a fantasy landscape best quality" | |
>>> liked = [] # list of images for positive feedback | |
>>> disliked = [] # list of images for negative feedback | |
>>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0] | |
``` | |
""" | |
class FabricCrossAttnProcessor: | |
def __init__(self): | |
self.attntion_probs = None | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
weights=None, | |
lora_scale=1.0, | |
): | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if isinstance(attn.processor, LoRAAttnProcessor): | |
query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states) | |
else: | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if isinstance(attn.processor, LoRAAttnProcessor): | |
key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states) | |
else: | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
if weights is not None: | |
if weights.shape[0] != 1: | |
weights = weights.repeat_interleave(attn.heads, dim=0) | |
attention_probs = attention_probs * weights[:, None] | |
attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
if isinstance(attn.processor, LoRAAttnProcessor): | |
hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states) | |
else: | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class FabricPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`EulerAncestralDiscreteScheduler`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
unet=unet, | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
def get_unet_hidden_states(self, z_all, t, prompt_embd): | |
cached_hidden_states = [] | |
for module in self.unet.modules(): | |
if isinstance(module, BasicTransformerBlock): | |
def new_forward(self, hidden_states, *args, **kwargs): | |
cached_hidden_states.append(hidden_states.clone().detach().cpu()) | |
return self.old_forward(hidden_states, *args, **kwargs) | |
module.attn1.old_forward = module.attn1.forward | |
module.attn1.forward = new_forward.__get__(module.attn1) | |
# run forward pass to cache hidden states, output can be discarded | |
_ = self.unet(z_all, t, encoder_hidden_states=prompt_embd) | |
# restore original forward pass | |
for module in self.unet.modules(): | |
if isinstance(module, BasicTransformerBlock): | |
module.attn1.forward = module.attn1.old_forward | |
del module.attn1.old_forward | |
return cached_hidden_states | |
def unet_forward_with_cached_hidden_states( | |
self, | |
z_all, | |
t, | |
prompt_embd, | |
cached_pos_hiddens: Optional[List[torch.Tensor]] = None, | |
cached_neg_hiddens: Optional[List[torch.Tensor]] = None, | |
pos_weights=(0.8, 0.8), | |
neg_weights=(0.5, 0.5), | |
): | |
if cached_pos_hiddens is None and cached_neg_hiddens is None: | |
return self.unet(z_all, t, encoder_hidden_states=prompt_embd) | |
local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() | |
local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() | |
for block, pos_weight, neg_weight in zip( | |
self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks, | |
local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1], | |
local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1], | |
): | |
for module in block.modules(): | |
if isinstance(module, BasicTransformerBlock): | |
def new_forward( | |
self, | |
hidden_states, | |
pos_weight=pos_weight, | |
neg_weight=neg_weight, | |
**kwargs, | |
): | |
cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0) | |
batch_size, d_model = cond_hiddens.shape[:2] | |
device, dtype = hidden_states.device, hidden_states.dtype | |
weights = torch.ones(batch_size, d_model, device=device, dtype=dtype) | |
out_pos = self.old_forward(hidden_states) | |
out_neg = self.old_forward(hidden_states) | |
if cached_pos_hiddens is not None: | |
cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device) | |
cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1) | |
pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model) | |
pos_weights[:, d_model:] = pos_weight | |
attn_with_weights = FabricCrossAttnProcessor() | |
out_pos = attn_with_weights( | |
self, | |
cond_hiddens, | |
encoder_hidden_states=cond_pos_hs, | |
weights=pos_weights, | |
) | |
else: | |
out_pos = self.old_forward(cond_hiddens) | |
if cached_neg_hiddens is not None: | |
cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device) | |
uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1) | |
neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model) | |
neg_weights[:, d_model:] = neg_weight | |
attn_with_weights = FabricCrossAttnProcessor() | |
out_neg = attn_with_weights( | |
self, | |
uncond_hiddens, | |
encoder_hidden_states=uncond_neg_hs, | |
weights=neg_weights, | |
) | |
else: | |
out_neg = self.old_forward(uncond_hiddens) | |
out = torch.cat([out_pos, out_neg], dim=0) | |
return out | |
module.attn1.old_forward = module.attn1.forward | |
module.attn1.forward = new_forward.__get__(module.attn1) | |
out = self.unet(z_all, t, encoder_hidden_states=prompt_embd) | |
# restore original forward pass | |
for module in self.unet.modules(): | |
if isinstance(module, BasicTransformerBlock): | |
module.attn1.forward = module.attn1.old_forward | |
del module.attn1.old_forward | |
return out | |
def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor: | |
images_t = [self.image_to_tensor(img, dim, dtype) for img in images] | |
images_t = torch.stack(images_t).to(device) | |
latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator) | |
return torch.cat([latents], dim=0) | |
def check_inputs( | |
self, | |
prompt, | |
negative_prompt=None, | |
liked=None, | |
disliked=None, | |
height=None, | |
width=None, | |
): | |
if prompt is None: | |
raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.") | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and ( | |
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list) | |
): | |
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") | |
if liked is not None and not isinstance(liked, list): | |
raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}") | |
if disliked is not None and not isinstance(disliked, list): | |
raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}") | |
if height is not None and not isinstance(height, int): | |
raise ValueError(f"`height` has to be of type `int` but is {type(height)}") | |
if width is not None and not isinstance(width, int): | |
raise ValueError(f"`width` has to be of type `int` but is {type(width)}") | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = "", | |
negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality", | |
liked: Optional[Union[List[str], List[Image.Image]]] = [], | |
disliked: Optional[Union[List[str], List[Image.Image]]] = [], | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
height: int = 512, | |
width: int = 512, | |
return_dict: bool = True, | |
num_images: int = 4, | |
guidance_scale: float = 7.0, | |
num_inference_steps: int = 20, | |
output_type: Optional[str] = "pil", | |
feedback_start_ratio: float = 0.33, | |
feedback_end_ratio: float = 0.66, | |
min_weight: float = 0.05, | |
max_weight: float = 0.8, | |
neg_scale: float = 0.5, | |
pos_bottleneck_scale: float = 1.0, | |
neg_bottleneck_scale: float = 1.0, | |
latents: Optional[torch.Tensor] = None, | |
): | |
r""" | |
The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The | |
feedback can be given as a list of liked and disliked images. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds` | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
liked (`List[Image.Image]` or `List[str]`, *optional*): | |
Encourages images with liked features. | |
disliked (`List[Image.Image]` or `List[str]`, *optional*): | |
Discourages images with disliked features. | |
generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to | |
make generation deterministic. | |
height (`int`, *optional*, defaults to 512): | |
Height of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
Width of the generated image. | |
num_images (`int`, *optional*, defaults to 4): | |
The number of images to generate per prompt. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
num_inference_steps (`int`, *optional*, defaults to 20): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
feedback_start_ratio (`float`, *optional*, defaults to `.33`): | |
Start point for providing feedback (between 0 and 1). | |
feedback_end_ratio (`float`, *optional*, defaults to `.66`): | |
End point for providing feedback (between 0 and 1). | |
min_weight (`float`, *optional*, defaults to `.05`): | |
Minimum weight for feedback. | |
max_weight (`float`, *optional*, defults tp `1.0`): | |
Maximum weight for feedback. | |
neg_scale (`float`, *optional*, defaults to `.5`): | |
Scale factor for negative feedback. | |
Examples: | |
Returns: | |
[`~pipelines.fabric.FabricPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
self.check_inputs(prompt, negative_prompt, liked, disliked) | |
device = self._execution_device | |
dtype = self.unet.dtype | |
if isinstance(prompt, str) and prompt is not None: | |
batch_size = 1 | |
elif isinstance(prompt, list) and prompt is not None: | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if isinstance(negative_prompt, str): | |
negative_prompt = negative_prompt | |
elif isinstance(negative_prompt, list): | |
negative_prompt = negative_prompt | |
else: | |
assert len(negative_prompt) == batch_size | |
shape = ( | |
batch_size * num_images, | |
self.unet.config.in_channels, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
latent_noise = randn_tensor( | |
shape, | |
device=device, | |
dtype=dtype, | |
generator=generator, | |
) | |
positive_latents = ( | |
self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator) | |
if liked and len(liked) > 0 | |
else torch.tensor( | |
[], | |
device=device, | |
dtype=dtype, | |
) | |
) | |
negative_latents = ( | |
self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator) | |
if disliked and len(disliked) > 0 | |
else torch.tensor( | |
[], | |
device=device, | |
dtype=dtype, | |
) | |
) | |
do_classifier_free_guidance = guidance_scale > 0.1 | |
(prompt_neg_embs, prompt_pos_embs) = self._encode_prompt( | |
prompt, | |
device, | |
num_images, | |
do_classifier_free_guidance, | |
negative_prompt, | |
).split([num_images * batch_size, num_images * batch_size]) | |
batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0) | |
null_tokens = self.tokenizer( | |
[""], | |
return_tensors="pt", | |
max_length=self.tokenizer.model_max_length, | |
padding="max_length", | |
truncation=True, | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = null_tokens.attention_mask.to(device) | |
else: | |
attention_mask = None | |
null_prompt_emb = self.text_encoder( | |
input_ids=null_tokens.input_ids.to(device), | |
attention_mask=attention_mask, | |
).last_hidden_state | |
null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
latent_noise = latent_noise * self.scheduler.init_noise_sigma | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
ref_start_idx = round(len(timesteps) * feedback_start_ratio) | |
ref_end_idx = round(len(timesteps) * feedback_end_ratio) | |
with self.progress_bar(total=num_inference_steps) as pbar: | |
for i, t in enumerate(timesteps): | |
sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0 | |
if hasattr(self.scheduler, "sigmas"): | |
sigma = self.scheduler.sigmas[i] | |
alpha_hat = 1 / (sigma**2 + 1) | |
z_single = self.scheduler.scale_model_input(latent_noise, t) | |
z_all = torch.cat([z_single] * 2, dim=0) | |
z_ref = torch.cat([positive_latents, negative_latents], dim=0) | |
if i >= ref_start_idx and i <= ref_end_idx: | |
weight_factor = max_weight | |
else: | |
weight_factor = min_weight | |
pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale) | |
neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale) | |
if z_ref.size(0) > 0 and weight_factor > 0: | |
noise = torch.randn_like(z_ref) | |
if isinstance(self.scheduler, EulerAncestralDiscreteScheduler): | |
z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype) | |
else: | |
z_ref_noised = self.scheduler.add_noise(z_ref, noise, t) | |
ref_prompt_embd = torch.cat( | |
[null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0 | |
) | |
cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd) | |
n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0] | |
cached_pos_hs, cached_neg_hs = [], [] | |
for hs in cached_hidden_states: | |
cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0) | |
cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1) | |
cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1) | |
cached_pos_hs.append(cached_pos) | |
cached_neg_hs.append(cached_neg) | |
if n_pos == 0: | |
cached_pos_hs = None | |
if n_neg == 0: | |
cached_neg_hs = None | |
else: | |
cached_pos_hs, cached_neg_hs = None, None | |
unet_out = self.unet_forward_with_cached_hidden_states( | |
z_all, | |
t, | |
prompt_embd=batched_prompt_embd, | |
cached_pos_hiddens=cached_pos_hs, | |
cached_neg_hiddens=cached_neg_hs, | |
pos_weights=pos_ws, | |
neg_weights=neg_ws, | |
)[0] | |
noise_cond, noise_uncond = unet_out.chunk(2) | |
guidance = noise_cond - noise_uncond | |
noise_pred = noise_uncond + guidance_scale * guidance | |
latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0] | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
pbar.update() | |
y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0] | |
imgs = self.image_processor.postprocess( | |
y, | |
output_type=output_type, | |
) | |
if not return_dict: | |
return imgs | |
return StableDiffusionPipelineOutput(imgs, False) | |
def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype): | |
""" | |
Convert latent PIL image to a torch tensor for further processing. | |
""" | |
if isinstance(image, str): | |
image = Image.open(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0] | |
return image.type(dtype) | |