Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import gc | |
import itertools | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import warnings | |
from contextlib import nullcontext | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, hf_hub_download, upload_folder | |
from huggingface_hub.utils import insecure_hashlib | |
from packaging import version | |
from peft import LoraConfig, set_peft_model_state_dict | |
from peft.utils import get_peft_model_state_dict | |
from PIL import Image | |
from PIL.ImageOps import exif_transpose | |
from safetensors.torch import load_file, save_file | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from torchvision.transforms.functional import crop | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, PretrainedConfig | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DPMSolverMultistepScheduler, | |
EDMEulerScheduler, | |
EulerDiscreteScheduler, | |
StableDiffusionXLPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.loaders import LoraLoaderMixin | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr | |
from diffusers.utils import ( | |
check_min_version, | |
convert_all_state_dict_to_peft, | |
convert_state_dict_to_diffusers, | |
convert_state_dict_to_kohya, | |
convert_unet_state_dict_to_peft, | |
is_wandb_available, | |
) | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import is_compiled_module | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.30.0.dev0") | |
logger = get_logger(__name__) | |
def determine_scheduler_type(pretrained_model_name_or_path, revision): | |
model_index_filename = "model_index.json" | |
if os.path.isdir(pretrained_model_name_or_path): | |
model_index = os.path.join(pretrained_model_name_or_path, model_index_filename) | |
else: | |
model_index = hf_hub_download( | |
repo_id=pretrained_model_name_or_path, filename=model_index_filename, revision=revision | |
) | |
with open(model_index, "r") as f: | |
scheduler_type = json.load(f)["scheduler"][1] | |
return scheduler_type | |
def save_model_card( | |
repo_id: str, | |
use_dora: bool, | |
images=None, | |
base_model: str = None, | |
train_text_encoder=False, | |
instance_prompt=None, | |
validation_prompt=None, | |
repo_folder=None, | |
vae_path=None, | |
): | |
widget_dict = [] | |
if images is not None: | |
for i, image in enumerate(images): | |
image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
widget_dict.append( | |
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} | |
) | |
model_description = f""" | |
# {'SDXL' if 'playground' not in base_model else 'Playground'} LoRA DreamBooth - {repo_id} | |
<Gallery /> | |
## Model description | |
These are {repo_id} LoRA adaption weights for {base_model}. | |
The weights were trained using [DreamBooth](https://dreambooth.github.io/). | |
LoRA for the text encoder was enabled: {train_text_encoder}. | |
Special VAE used for training: {vae_path}. | |
## Trigger words | |
You should use {instance_prompt} to trigger the image generation. | |
## Download model | |
Weights for this model are available in Safetensors format. | |
[Download]({repo_id}/tree/main) them in the Files & versions tab. | |
""" | |
if "playground" in base_model: | |
model_description += """\n | |
## License | |
Please adhere to the licensing terms as described [here](https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic/blob/main/LICENSE.md). | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="openrail++" if "playground" not in base_model else "playground-v2dot5-community", | |
base_model=base_model, | |
prompt=instance_prompt, | |
model_description=model_description, | |
widget=widget_dict, | |
) | |
tags = [ | |
"text-to-image", | |
"text-to-image", | |
"diffusers-training", | |
"diffusers", | |
"lora" if not use_dora else "dora", | |
"template:sd-lora", | |
] | |
if "playground" in base_model: | |
tags.extend(["playground", "playground-diffusers"]) | |
else: | |
tags.extend(["stable-diffusion-xl", "stable-diffusion-xl-diffusers"]) | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def log_validation( | |
pipeline, | |
args, | |
accelerator, | |
pipeline_args, | |
epoch, | |
is_final_validation=False, | |
): | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it | |
scheduler_args = {} | |
if not args.do_edm_style_training: | |
if "variance_type" in pipeline.scheduler.config: | |
variance_type = pipeline.scheduler.config.variance_type | |
if variance_type in ["learned", "learned_range"]: | |
variance_type = "fixed_small" | |
scheduler_args["variance_type"] = variance_type | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None | |
# Currently the context determination is a bit hand-wavy. We can improve it in the future if there's a better | |
# way to condition it. Reference: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051 | |
if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path: | |
autocast_ctx = nullcontext() | |
else: | |
autocast_ctx = torch.autocast(accelerator.device.type) | |
with autocast_ctx: | |
images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)] | |
for tracker in accelerator.trackers: | |
phase_name = "test" if is_final_validation else "validation" | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
phase_name: [ | |
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return images | |
def import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "CLIPTextModelWithProjection": | |
from transformers import CLIPTextModelWithProjection | |
return CLIPTextModelWithProjection | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_vae_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
help=("A folder containing the training data. "), | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument( | |
"--image_column", | |
type=str, | |
default="image", | |
help="The column of the dataset containing the target image. By " | |
"default, the standard Image Dataset maps out 'file_name' " | |
"to 'image'.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default=None, | |
help="The column of the dataset containing the instance prompt for each image", | |
) | |
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
parser.add_argument( | |
"--class_data_dir", | |
type=str, | |
default=None, | |
required=False, | |
help="A folder containing the training data of class images.", | |
) | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
default=None, | |
required=True, | |
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", | |
) | |
parser.add_argument( | |
"--class_prompt", | |
type=str, | |
default=None, | |
help="The prompt to specify images in the same class as provided instance images.", | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=4, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=50, | |
help=( | |
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--do_edm_style_training", | |
default=False, | |
action="store_true", | |
help="Flag to conduct training using the EDM formulation as introduced in https://arxiv.org/abs/2206.00364.", | |
) | |
parser.add_argument( | |
"--with_prior_preservation", | |
default=False, | |
action="store_true", | |
help="Flag to add prior preservation loss.", | |
) | |
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
parser.add_argument( | |
"--num_class_images", | |
type=int, | |
default=100, | |
help=( | |
"Minimal class images for prior preservation loss. If there are not enough images already present in" | |
" class_data_dir, additional images will be sampled with class_prompt." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="lora-dreambooth-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--output_kohya_format", | |
action="store_true", | |
help="Flag to additionally generate final state dict in the Kohya format so that it becomes compatible with A111, Comfy, Kohya, etc.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=1024, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--random_flip", | |
action="store_true", | |
help="whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--train_text_encoder", | |
action="store_true", | |
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--text_encoder_lr", | |
type=float, | |
default=5e-6, | |
help="Text encoder learning rate to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--snr_gamma", | |
type=float, | |
default=None, | |
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
"More details here: https://arxiv.org/abs/2303.09556.", | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument( | |
"--optimizer", | |
type=str, | |
default="AdamW", | |
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), | |
) | |
parser.add_argument( | |
"--use_8bit_adam", | |
action="store_true", | |
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
) | |
parser.add_argument( | |
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." | |
) | |
parser.add_argument( | |
"--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." | |
) | |
parser.add_argument( | |
"--prodigy_beta3", | |
type=float, | |
default=None, | |
help="coefficients for computing the Prodidy stepsize using running averages. If set to None, " | |
"uses the value of square root of beta2. Ignored if optimizer is adamW", | |
) | |
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
parser.add_argument( | |
"--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder" | |
) | |
parser.add_argument( | |
"--adam_epsilon", | |
type=float, | |
default=1e-08, | |
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
) | |
parser.add_argument( | |
"--prodigy_use_bias_correction", | |
type=bool, | |
default=True, | |
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", | |
) | |
parser.add_argument( | |
"--prodigy_safeguard_warmup", | |
type=bool, | |
default=True, | |
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " | |
"Ignored if optimizer is adamW", | |
) | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--prior_generation_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp32", "fp16", "bf16"], | |
help=( | |
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--rank", | |
type=int, | |
default=4, | |
help=("The dimension of the LoRA update matrices."), | |
) | |
parser.add_argument( | |
"--use_dora", | |
action="store_true", | |
default=False, | |
help=( | |
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. " | |
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`" | |
), | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
if args.dataset_name is None and args.instance_data_dir is None: | |
raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") | |
if args.dataset_name is not None and args.instance_data_dir is not None: | |
raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.with_prior_preservation: | |
if args.class_data_dir is None: | |
raise ValueError("You must specify a data directory for class images.") | |
if args.class_prompt is None: | |
raise ValueError("You must specify prompt for class images.") | |
else: | |
# logger is not available yet | |
if args.class_data_dir is not None: | |
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") | |
if args.class_prompt is not None: | |
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") | |
return args | |
class DreamBoothDataset(Dataset): | |
""" | |
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
It pre-processes the images. | |
""" | |
def __init__( | |
self, | |
instance_data_root, | |
instance_prompt, | |
class_prompt, | |
class_data_root=None, | |
class_num=None, | |
size=1024, | |
repeats=1, | |
center_crop=False, | |
): | |
self.size = size | |
self.center_crop = center_crop | |
self.instance_prompt = instance_prompt | |
self.custom_instance_prompts = None | |
self.class_prompt = class_prompt | |
# if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory, | |
# we load the training data using load_dataset | |
if args.dataset_name is not None: | |
try: | |
from datasets import load_dataset | |
except ImportError: | |
raise ImportError( | |
"You are trying to load your data using the datasets library. If you wish to train using custom " | |
"captions please install the datasets library: `pip install datasets`. If you wish to load a " | |
"local folder containing images only, specify --instance_data_dir instead." | |
) | |
# Downloading and loading a dataset from the hub. | |
# See more about loading custom images at | |
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
) | |
# Preprocessing the datasets. | |
column_names = dataset["train"].column_names | |
# 6. Get the column names for input/target. | |
if args.image_column is None: | |
image_column = column_names[0] | |
logger.info(f"image column defaulting to {image_column}") | |
else: | |
image_column = args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
instance_images = dataset["train"][image_column] | |
if args.caption_column is None: | |
logger.info( | |
"No caption column provided, defaulting to instance_prompt for all images. If your dataset " | |
"contains captions/prompts for the images, make sure to specify the " | |
"column as --caption_column" | |
) | |
self.custom_instance_prompts = None | |
else: | |
if args.caption_column not in column_names: | |
raise ValueError( | |
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
) | |
custom_instance_prompts = dataset["train"][args.caption_column] | |
# create final list of captions according to --repeats | |
self.custom_instance_prompts = [] | |
for caption in custom_instance_prompts: | |
self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) | |
else: | |
self.instance_data_root = Path(instance_data_root) | |
if not self.instance_data_root.exists(): | |
raise ValueError("Instance images root doesn't exists.") | |
instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] | |
self.custom_instance_prompts = None | |
self.instance_images = [] | |
for img in instance_images: | |
self.instance_images.extend(itertools.repeat(img, repeats)) | |
# image processing to prepare for using SD-XL micro-conditioning | |
self.original_sizes = [] | |
self.crop_top_lefts = [] | |
self.pixel_values = [] | |
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) | |
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) | |
train_flip = transforms.RandomHorizontalFlip(p=1.0) | |
train_transforms = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
for image in self.instance_images: | |
image = exif_transpose(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
self.original_sizes.append((image.height, image.width)) | |
image = train_resize(image) | |
if args.random_flip and random.random() < 0.5: | |
# flip | |
image = train_flip(image) | |
if args.center_crop: | |
y1 = max(0, int(round((image.height - args.resolution) / 2.0))) | |
x1 = max(0, int(round((image.width - args.resolution) / 2.0))) | |
image = train_crop(image) | |
else: | |
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) | |
image = crop(image, y1, x1, h, w) | |
crop_top_left = (y1, x1) | |
self.crop_top_lefts.append(crop_top_left) | |
image = train_transforms(image) | |
self.pixel_values.append(image) | |
self.num_instance_images = len(self.instance_images) | |
self._length = self.num_instance_images | |
if class_data_root is not None: | |
self.class_data_root = Path(class_data_root) | |
self.class_data_root.mkdir(parents=True, exist_ok=True) | |
self.class_images_path = list(self.class_data_root.iterdir()) | |
if class_num is not None: | |
self.num_class_images = min(len(self.class_images_path), class_num) | |
else: | |
self.num_class_images = len(self.class_images_path) | |
self._length = max(self.num_class_images, self.num_instance_images) | |
else: | |
self.class_data_root = None | |
self.image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __len__(self): | |
return self._length | |
def __getitem__(self, index): | |
example = {} | |
instance_image = self.pixel_values[index % self.num_instance_images] | |
original_size = self.original_sizes[index % self.num_instance_images] | |
crop_top_left = self.crop_top_lefts[index % self.num_instance_images] | |
example["instance_images"] = instance_image | |
example["original_size"] = original_size | |
example["crop_top_left"] = crop_top_left | |
if self.custom_instance_prompts: | |
caption = self.custom_instance_prompts[index % self.num_instance_images] | |
if caption: | |
example["instance_prompt"] = caption | |
else: | |
example["instance_prompt"] = self.instance_prompt | |
else: # costum prompts were provided, but length does not match size of image dataset | |
example["instance_prompt"] = self.instance_prompt | |
if self.class_data_root: | |
class_image = Image.open(self.class_images_path[index % self.num_class_images]) | |
class_image = exif_transpose(class_image) | |
if not class_image.mode == "RGB": | |
class_image = class_image.convert("RGB") | |
example["class_images"] = self.image_transforms(class_image) | |
example["class_prompt"] = self.class_prompt | |
return example | |
def collate_fn(examples, with_prior_preservation=False): | |
pixel_values = [example["instance_images"] for example in examples] | |
prompts = [example["instance_prompt"] for example in examples] | |
original_sizes = [example["original_size"] for example in examples] | |
crop_top_lefts = [example["crop_top_left"] for example in examples] | |
# Concat class and instance examples for prior preservation. | |
# We do this to avoid doing two forward passes. | |
if with_prior_preservation: | |
pixel_values += [example["class_images"] for example in examples] | |
prompts += [example["class_prompt"] for example in examples] | |
original_sizes += [example["original_size"] for example in examples] | |
crop_top_lefts += [example["crop_top_left"] for example in examples] | |
pixel_values = torch.stack(pixel_values) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
batch = { | |
"pixel_values": pixel_values, | |
"prompts": prompts, | |
"original_sizes": original_sizes, | |
"crop_top_lefts": crop_top_lefts, | |
} | |
return batch | |
class PromptDataset(Dataset): | |
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" | |
def __init__(self, prompt, num_samples): | |
self.prompt = prompt | |
self.num_samples = num_samples | |
def __len__(self): | |
return self.num_samples | |
def __getitem__(self, index): | |
example = {} | |
example["prompt"] = self.prompt | |
example["index"] = index | |
return example | |
def tokenize_prompt(tokenizer, prompt): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt | |
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): | |
prompt_embeds_list = [] | |
for i, text_encoder in enumerate(text_encoders): | |
if tokenizers is not None: | |
tokenizer = tokenizers[i] | |
text_input_ids = tokenize_prompt(tokenizer, prompt) | |
else: | |
assert text_input_ids_list is not None | |
text_input_ids = text_input_ids_list[i] | |
prompt_embeds = text_encoder( | |
text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds[-1][-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
return prompt_embeds, pooled_prompt_embeds | |
def main(args): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
if args.do_edm_style_training and args.snr_gamma is not None: | |
raise ValueError("Min-SNR formulation is not supported when conducting EDM-style training.") | |
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
kwargs_handlers=[kwargs], | |
) | |
# Disable AMP for MPS. | |
if torch.backends.mps.is_available(): | |
accelerator.native_amp = False | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Generate class images if prior preservation is enabled. | |
if args.with_prior_preservation: | |
class_images_dir = Path(args.class_data_dir) | |
if not class_images_dir.exists(): | |
class_images_dir.mkdir(parents=True) | |
cur_class_images = len(list(class_images_dir.iterdir())) | |
if cur_class_images < args.num_class_images: | |
has_supported_fp16_accelerator = torch.cuda.is_available() or torch.backends.mps.is_available() | |
torch_dtype = torch.float16 if has_supported_fp16_accelerator else torch.float32 | |
if args.prior_generation_precision == "fp32": | |
torch_dtype = torch.float32 | |
elif args.prior_generation_precision == "fp16": | |
torch_dtype = torch.float16 | |
elif args.prior_generation_precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
pipeline = StableDiffusionXLPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
torch_dtype=torch_dtype, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
num_new_images = args.num_class_images - cur_class_images | |
logger.info(f"Number of class images to sample: {num_new_images}.") | |
sample_dataset = PromptDataset(args.class_prompt, num_new_images) | |
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | |
sample_dataloader = accelerator.prepare(sample_dataloader) | |
pipeline.to(accelerator.device) | |
for example in tqdm( | |
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | |
): | |
images = pipeline(example["prompt"]).images | |
for i, image in enumerate(images): | |
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
image.save(image_filename) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load the tokenizers | |
tokenizer_one = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
use_fast=False, | |
) | |
tokenizer_two = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer_2", | |
revision=args.revision, | |
use_fast=False, | |
) | |
# import correct text encoder classes | |
text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision | |
) | |
text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
) | |
# Load scheduler and models | |
scheduler_type = determine_scheduler_type(args.pretrained_model_name_or_path, args.revision) | |
if "EDM" in scheduler_type: | |
args.do_edm_style_training = True | |
noise_scheduler = EDMEulerScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
logger.info("Performing EDM-style training!") | |
elif args.do_edm_style_training: | |
noise_scheduler = EulerDiscreteScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="scheduler" | |
) | |
logger.info("Performing EDM-style training!") | |
else: | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder_one = text_encoder_cls_one.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
text_encoder_two = text_encoder_cls_two.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
) | |
vae_path = ( | |
args.pretrained_model_name_or_path | |
if args.pretrained_vae_model_name_or_path is None | |
else args.pretrained_vae_model_name_or_path | |
) | |
vae = AutoencoderKL.from_pretrained( | |
vae_path, | |
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
latents_mean = latents_std = None | |
if hasattr(vae.config, "latents_mean") and vae.config.latents_mean is not None: | |
latents_mean = torch.tensor(vae.config.latents_mean).view(1, 4, 1, 1) | |
if hasattr(vae.config, "latents_std") and vae.config.latents_std is not None: | |
latents_std = torch.tensor(vae.config.latents_std).view(1, 4, 1, 1) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
) | |
# We only train the additional adapter LoRA layers | |
vae.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
unet.requires_grad_(False) | |
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
# due to pytorch#99272, MPS does not yet support bfloat16. | |
raise ValueError( | |
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
) | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
unet.to(accelerator.device, dtype=weight_dtype) | |
# The VAE is always in float32 to avoid NaN losses. | |
vae.to(accelerator.device, dtype=torch.float32) | |
text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, " | |
"please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if args.train_text_encoder: | |
text_encoder_one.gradient_checkpointing_enable() | |
text_encoder_two.gradient_checkpointing_enable() | |
# now we will add new LoRA weights to the attention layers | |
unet_lora_config = LoraConfig( | |
r=args.rank, | |
use_dora=args.use_dora, | |
lora_alpha=args.rank, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
) | |
unet.add_adapter(unet_lora_config) | |
# The text encoder comes from 🤗 transformers, so we cannot directly modify it. | |
# So, instead, we monkey-patch the forward calls of its attention-blocks. | |
if args.train_text_encoder: | |
text_lora_config = LoraConfig( | |
r=args.rank, | |
use_dora=args.use_dora, | |
lora_alpha=args.rank, | |
init_lora_weights="gaussian", | |
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], | |
) | |
text_encoder_one.add_adapter(text_lora_config) | |
text_encoder_two.add_adapter(text_lora_config) | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
# there are only two options here. Either are just the unet attn processor layers | |
# or there are the unet and text encoder atten layers | |
unet_lora_layers_to_save = None | |
text_encoder_one_lora_layers_to_save = None | |
text_encoder_two_lora_layers_to_save = None | |
for model in models: | |
if isinstance(model, type(unwrap_model(unet))): | |
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) | |
elif isinstance(model, type(unwrap_model(text_encoder_one))): | |
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers( | |
get_peft_model_state_dict(model) | |
) | |
elif isinstance(model, type(unwrap_model(text_encoder_two))): | |
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers( | |
get_peft_model_state_dict(model) | |
) | |
else: | |
raise ValueError(f"unexpected save model: {model.__class__}") | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
StableDiffusionXLPipeline.save_lora_weights( | |
output_dir, | |
unet_lora_layers=unet_lora_layers_to_save, | |
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save, | |
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save, | |
) | |
def load_model_hook(models, input_dir): | |
unet_ = None | |
text_encoder_one_ = None | |
text_encoder_two_ = None | |
while len(models) > 0: | |
model = models.pop() | |
if isinstance(model, type(unwrap_model(unet))): | |
unet_ = model | |
elif isinstance(model, type(unwrap_model(text_encoder_one))): | |
text_encoder_one_ = model | |
elif isinstance(model, type(unwrap_model(text_encoder_two))): | |
text_encoder_two_ = model | |
else: | |
raise ValueError(f"unexpected save model: {model.__class__}") | |
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) | |
unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")} | |
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) | |
incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default") | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
if args.train_text_encoder: | |
# Do we need to call `scale_lora_layers()` here? | |
_set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_) | |
_set_state_dict_into_text_encoder( | |
lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_ | |
) | |
# Make sure the trainable params are in float32. This is again needed since the base models | |
# are in `weight_dtype`. More details: | |
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 | |
if args.mixed_precision == "fp16": | |
models = [unet_] | |
if args.train_text_encoder: | |
models.extend([text_encoder_one_, text_encoder_two_]) | |
# only upcast trainable parameters (LoRA) into fp32 | |
cast_training_params(models) | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32 and torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Make sure the trainable params are in float32. | |
if args.mixed_precision == "fp16": | |
models = [unet] | |
if args.train_text_encoder: | |
models.extend([text_encoder_one, text_encoder_two]) | |
# only upcast trainable parameters (LoRA) into fp32 | |
cast_training_params(models, dtype=torch.float32) | |
unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters())) | |
if args.train_text_encoder: | |
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters())) | |
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters())) | |
# Optimization parameters | |
unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate} | |
if args.train_text_encoder: | |
# different learning rate for text encoder and unet | |
text_lora_parameters_one_with_lr = { | |
"params": text_lora_parameters_one, | |
"weight_decay": args.adam_weight_decay_text_encoder, | |
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, | |
} | |
text_lora_parameters_two_with_lr = { | |
"params": text_lora_parameters_two, | |
"weight_decay": args.adam_weight_decay_text_encoder, | |
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, | |
} | |
params_to_optimize = [ | |
unet_lora_parameters_with_lr, | |
text_lora_parameters_one_with_lr, | |
text_lora_parameters_two_with_lr, | |
] | |
else: | |
params_to_optimize = [unet_lora_parameters_with_lr] | |
# Optimizer creation | |
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): | |
logger.warning( | |
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." | |
"Defaulting to adamW" | |
) | |
args.optimizer = "adamw" | |
if args.use_8bit_adam and not args.optimizer.lower() == "adamw": | |
logger.warning( | |
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " | |
f"set to {args.optimizer.lower()}" | |
) | |
if args.optimizer.lower() == "adamw": | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
optimizer = optimizer_class( | |
params_to_optimize, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
if args.optimizer.lower() == "prodigy": | |
try: | |
import prodigyopt | |
except ImportError: | |
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") | |
optimizer_class = prodigyopt.Prodigy | |
if args.learning_rate <= 0.1: | |
logger.warning( | |
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" | |
) | |
if args.train_text_encoder and args.text_encoder_lr: | |
logger.warning( | |
f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:" | |
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " | |
f"When using prodigy only learning_rate is used as the initial learning rate." | |
) | |
# changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be | |
# --learning_rate | |
params_to_optimize[1]["lr"] = args.learning_rate | |
params_to_optimize[2]["lr"] = args.learning_rate | |
optimizer = optimizer_class( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
beta3=args.prodigy_beta3, | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
decouple=args.prodigy_decouple, | |
use_bias_correction=args.prodigy_use_bias_correction, | |
safeguard_warmup=args.prodigy_safeguard_warmup, | |
) | |
# Dataset and DataLoaders creation: | |
train_dataset = DreamBoothDataset( | |
instance_data_root=args.instance_data_dir, | |
instance_prompt=args.instance_prompt, | |
class_prompt=args.class_prompt, | |
class_data_root=args.class_data_dir if args.with_prior_preservation else None, | |
class_num=args.num_class_images, | |
size=args.resolution, | |
repeats=args.repeats, | |
center_crop=args.center_crop, | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), | |
num_workers=args.dataloader_num_workers, | |
) | |
# Computes additional embeddings/ids required by the SDXL UNet. | |
# regular text embeddings (when `train_text_encoder` is not True) | |
# pooled text embeddings | |
# time ids | |
def compute_time_ids(original_size, crops_coords_top_left): | |
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
target_size = (args.resolution, args.resolution) | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
add_time_ids = torch.tensor([add_time_ids]) | |
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) | |
return add_time_ids | |
if not args.train_text_encoder: | |
tokenizers = [tokenizer_one, tokenizer_two] | |
text_encoders = [text_encoder_one, text_encoder_two] | |
def compute_text_embeddings(prompt, text_encoders, tokenizers): | |
with torch.no_grad(): | |
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) | |
prompt_embeds = prompt_embeds.to(accelerator.device) | |
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) | |
return prompt_embeds, pooled_prompt_embeds | |
# If no type of tuning is done on the text_encoder and custom instance prompts are NOT | |
# provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid | |
# the redundant encoding. | |
if not args.train_text_encoder and not train_dataset.custom_instance_prompts: | |
instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings( | |
args.instance_prompt, text_encoders, tokenizers | |
) | |
# Handle class prompt for prior-preservation. | |
if args.with_prior_preservation: | |
if not args.train_text_encoder: | |
class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings( | |
args.class_prompt, text_encoders, tokenizers | |
) | |
# Clear the memory here | |
if not args.train_text_encoder and not train_dataset.custom_instance_prompts: | |
del tokenizers, text_encoders | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images), | |
# pack the statically computed variables appropriately here. This is so that we don't | |
# have to pass them to the dataloader. | |
if not train_dataset.custom_instance_prompts: | |
if not args.train_text_encoder: | |
prompt_embeds = instance_prompt_hidden_states | |
unet_add_text_embeds = instance_pooled_prompt_embeds | |
if args.with_prior_preservation: | |
prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0) | |
unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0) | |
# if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the | |
# batch prompts on all training steps | |
else: | |
tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt) | |
tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt) | |
if args.with_prior_preservation: | |
class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt) | |
class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt) | |
tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0) | |
tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
if args.train_text_encoder: | |
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler | |
) | |
else: | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_name = ( | |
"dreambooth-lora-sd-xl" | |
if "playground" not in args.pretrained_model_name_or_path | |
else "dreambooth-lora-playground" | |
) | |
accelerator.init_trackers(tracker_name, config=vars(args)) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the mos recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype) | |
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device) | |
timesteps = timesteps.to(accelerator.device) | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < n_dim: | |
sigma = sigma.unsqueeze(-1) | |
return sigma | |
for epoch in range(first_epoch, args.num_train_epochs): | |
unet.train() | |
if args.train_text_encoder: | |
text_encoder_one.train() | |
text_encoder_two.train() | |
# set top parameter requires_grad = True for gradient checkpointing works | |
accelerator.unwrap_model(text_encoder_one).text_model.embeddings.requires_grad_(True) | |
accelerator.unwrap_model(text_encoder_two).text_model.embeddings.requires_grad_(True) | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(unet): | |
pixel_values = batch["pixel_values"].to(dtype=vae.dtype) | |
prompts = batch["prompts"] | |
# encode batch prompts when custom prompts are provided for each image - | |
if train_dataset.custom_instance_prompts: | |
if not args.train_text_encoder: | |
prompt_embeds, unet_add_text_embeds = compute_text_embeddings( | |
prompts, text_encoders, tokenizers | |
) | |
else: | |
tokens_one = tokenize_prompt(tokenizer_one, prompts) | |
tokens_two = tokenize_prompt(tokenizer_two, prompts) | |
# Convert images to latent space | |
model_input = vae.encode(pixel_values).latent_dist.sample() | |
if latents_mean is None and latents_std is None: | |
model_input = model_input * vae.config.scaling_factor | |
if args.pretrained_vae_model_name_or_path is None: | |
model_input = model_input.to(weight_dtype) | |
else: | |
latents_mean = latents_mean.to(device=model_input.device, dtype=model_input.dtype) | |
latents_std = latents_std.to(device=model_input.device, dtype=model_input.dtype) | |
model_input = (model_input - latents_mean) * vae.config.scaling_factor / latents_std | |
model_input = model_input.to(dtype=weight_dtype) | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(model_input) | |
bsz = model_input.shape[0] | |
# Sample a random timestep for each image | |
if not args.do_edm_style_training: | |
timesteps = torch.randint( | |
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device | |
) | |
timesteps = timesteps.long() | |
else: | |
# in EDM formulation, the model is conditioned on the pre-conditioned noise levels | |
# instead of discrete timesteps, so here we sample indices to get the noise levels | |
# from `scheduler.timesteps` | |
indices = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,)) | |
timesteps = noise_scheduler.timesteps[indices].to(device=model_input.device) | |
# Add noise to the model input according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) | |
# For EDM-style training, we first obtain the sigmas based on the continuous timesteps. | |
# We then precondition the final model inputs based on these sigmas instead of the timesteps. | |
# Follow: Section 5 of https://arxiv.org/abs/2206.00364. | |
if args.do_edm_style_training: | |
sigmas = get_sigmas(timesteps, len(noisy_model_input.shape), noisy_model_input.dtype) | |
if "EDM" in scheduler_type: | |
inp_noisy_latents = noise_scheduler.precondition_inputs(noisy_model_input, sigmas) | |
else: | |
inp_noisy_latents = noisy_model_input / ((sigmas**2 + 1) ** 0.5) | |
# time ids | |
add_time_ids = torch.cat( | |
[ | |
compute_time_ids(original_size=s, crops_coords_top_left=c) | |
for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"]) | |
] | |
) | |
# Calculate the elements to repeat depending on the use of prior-preservation and custom captions. | |
if not train_dataset.custom_instance_prompts: | |
elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz | |
else: | |
elems_to_repeat_text_embeds = 1 | |
# Predict the noise residual | |
if not args.train_text_encoder: | |
unet_added_conditions = { | |
"time_ids": add_time_ids, | |
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1), | |
} | |
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) | |
model_pred = unet( | |
inp_noisy_latents if args.do_edm_style_training else noisy_model_input, | |
timesteps, | |
prompt_embeds_input, | |
added_cond_kwargs=unet_added_conditions, | |
return_dict=False, | |
)[0] | |
else: | |
unet_added_conditions = {"time_ids": add_time_ids} | |
prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
text_encoders=[text_encoder_one, text_encoder_two], | |
tokenizers=None, | |
prompt=None, | |
text_input_ids_list=[tokens_one, tokens_two], | |
) | |
unet_added_conditions.update( | |
{"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)} | |
) | |
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) | |
model_pred = unet( | |
inp_noisy_latents if args.do_edm_style_training else noisy_model_input, | |
timesteps, | |
prompt_embeds_input, | |
added_cond_kwargs=unet_added_conditions, | |
return_dict=False, | |
)[0] | |
weighting = None | |
if args.do_edm_style_training: | |
# Similar to the input preconditioning, the model predictions are also preconditioned | |
# on noised model inputs (before preconditioning) and the sigmas. | |
# Follow: Section 5 of https://arxiv.org/abs/2206.00364. | |
if "EDM" in scheduler_type: | |
model_pred = noise_scheduler.precondition_outputs(noisy_model_input, model_pred, sigmas) | |
else: | |
if noise_scheduler.config.prediction_type == "epsilon": | |
model_pred = model_pred * (-sigmas) + noisy_model_input | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
model_pred = model_pred * (-sigmas / (sigmas**2 + 1) ** 0.5) + ( | |
noisy_model_input / (sigmas**2 + 1) | |
) | |
# We are not doing weighting here because it tends result in numerical problems. | |
# See: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051 | |
# There might be other alternatives for weighting as well: | |
# https://github.com/huggingface/diffusers/pull/7126#discussion_r1505404686 | |
if "EDM" not in scheduler_type: | |
weighting = (sigmas**-2.0).float() | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = model_input if args.do_edm_style_training else noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = ( | |
model_input | |
if args.do_edm_style_training | |
else noise_scheduler.get_velocity(model_input, noise, timesteps) | |
) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if args.with_prior_preservation: | |
# Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | |
target, target_prior = torch.chunk(target, 2, dim=0) | |
# Compute prior loss | |
if weighting is not None: | |
prior_loss = torch.mean( | |
(weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape( | |
target_prior.shape[0], -1 | |
), | |
1, | |
) | |
prior_loss = prior_loss.mean() | |
else: | |
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") | |
if args.snr_gamma is None: | |
if weighting is not None: | |
loss = torch.mean( | |
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape( | |
target.shape[0], -1 | |
), | |
1, | |
) | |
loss = loss.mean() | |
else: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
# This is discussed in Section 4.2 of the same paper. | |
snr = compute_snr(noise_scheduler, timesteps) | |
base_weight = ( | |
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
if noise_scheduler.config.prediction_type == "v_prediction": | |
# Velocity objective needs to be floored to an SNR weight of one. | |
mse_loss_weights = base_weight + 1 | |
else: | |
# Epsilon and sample both use the same loss weights. | |
mse_loss_weights = base_weight | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
if args.with_prior_preservation: | |
# Add the prior loss to the instance loss. | |
loss = loss + args.prior_loss_weight * prior_loss | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = ( | |
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two) | |
if args.train_text_encoder | |
else unet_lora_parameters | |
) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
if accelerator.is_main_process: | |
if args.validation_prompt is not None and epoch % args.validation_epochs == 0: | |
# create pipeline | |
if not args.train_text_encoder: | |
text_encoder_one = text_encoder_cls_one.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="text_encoder", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
text_encoder_two = text_encoder_cls_two.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="text_encoder_2", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipeline = StableDiffusionXLPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=vae, | |
text_encoder=accelerator.unwrap_model(text_encoder_one), | |
text_encoder_2=accelerator.unwrap_model(text_encoder_two), | |
unet=accelerator.unwrap_model(unet), | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline_args = {"prompt": args.validation_prompt} | |
images = log_validation( | |
pipeline, | |
args, | |
accelerator, | |
pipeline_args, | |
epoch, | |
) | |
# Save the lora layers | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = unwrap_model(unet) | |
unet = unet.to(torch.float32) | |
unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) | |
if args.train_text_encoder: | |
text_encoder_one = unwrap_model(text_encoder_one) | |
text_encoder_lora_layers = convert_state_dict_to_diffusers( | |
get_peft_model_state_dict(text_encoder_one.to(torch.float32)) | |
) | |
text_encoder_two = unwrap_model(text_encoder_two) | |
text_encoder_2_lora_layers = convert_state_dict_to_diffusers( | |
get_peft_model_state_dict(text_encoder_two.to(torch.float32)) | |
) | |
else: | |
text_encoder_lora_layers = None | |
text_encoder_2_lora_layers = None | |
StableDiffusionXLPipeline.save_lora_weights( | |
save_directory=args.output_dir, | |
unet_lora_layers=unet_lora_layers, | |
text_encoder_lora_layers=text_encoder_lora_layers, | |
text_encoder_2_lora_layers=text_encoder_2_lora_layers, | |
) | |
if args.output_kohya_format: | |
lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors") | |
peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict) | |
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) | |
save_file(kohya_state_dict, f"{args.output_dir}/pytorch_lora_weights_kohya.safetensors") | |
# Final inference | |
# Load previous pipeline | |
vae = AutoencoderKL.from_pretrained( | |
vae_path, | |
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = StableDiffusionXLPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=vae, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
) | |
# load attention processors | |
pipeline.load_lora_weights(args.output_dir) | |
# run inference | |
images = [] | |
if args.validation_prompt and args.num_validation_images > 0: | |
pipeline_args = {"prompt": args.validation_prompt, "num_inference_steps": 25} | |
images = log_validation( | |
pipeline, | |
args, | |
accelerator, | |
pipeline_args, | |
epoch, | |
is_final_validation=True, | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
use_dora=args.use_dora, | |
images=images, | |
base_model=args.pretrained_model_name_or_path, | |
train_text_encoder=args.train_text_encoder, | |
instance_prompt=args.instance_prompt, | |
validation_prompt=args.validation_prompt, | |
repo_folder=args.output_dir, | |
vae_path=args.pretrained_vae_model_name_or_path, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |