Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import logging | |
import os | |
import shutil | |
import sys | |
import tempfile | |
import torch | |
from diffusers import VQModel | |
from diffusers.utils.testing_utils import require_timm | |
sys.path.append("..") | |
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class TextToImage(ExamplesTestsAccelerate): | |
def test_vqmodel_config(self): | |
return { | |
"_class_name": "VQModel", | |
"_diffusers_version": "0.17.0.dev0", | |
"act_fn": "silu", | |
"block_out_channels": [ | |
32, | |
], | |
"down_block_types": [ | |
"DownEncoderBlock2D", | |
], | |
"in_channels": 3, | |
"latent_channels": 4, | |
"layers_per_block": 2, | |
"norm_num_groups": 32, | |
"norm_type": "spatial", | |
"num_vq_embeddings": 32, | |
"out_channels": 3, | |
"sample_size": 32, | |
"scaling_factor": 0.18215, | |
"up_block_types": [ | |
"UpDecoderBlock2D", | |
], | |
"vq_embed_dim": 4, | |
} | |
def test_discriminator_config(self): | |
return { | |
"_class_name": "Discriminator", | |
"_diffusers_version": "0.27.0.dev0", | |
"in_channels": 3, | |
"cond_channels": 0, | |
"hidden_channels": 8, | |
"depth": 4, | |
} | |
def get_vq_and_discriminator_configs(self, tmpdir): | |
vqmodel_config_path = os.path.join(tmpdir, "vqmodel.json") | |
discriminator_config_path = os.path.join(tmpdir, "discriminator.json") | |
with open(vqmodel_config_path, "w") as fp: | |
json.dump(self.test_vqmodel_config, fp) | |
with open(discriminator_config_path, "w") as fp: | |
json.dump(self.test_discriminator_config, fp) | |
return vqmodel_config_path, discriminator_config_path | |
def test_vqmodel(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
test_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 2 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--output_dir {tmpdir} | |
""".split() | |
run_command(self._launch_args + test_args) | |
# save_pretrained smoke test | |
self.assertTrue( | |
os.path.isfile(os.path.join(tmpdir, "discriminator", "diffusion_pytorch_model.safetensors")) | |
) | |
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "vqmodel", "diffusion_pytorch_model.safetensors"))) | |
def test_vqmodel_checkpointing(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--checkpointing_steps=2 | |
--output_dir {tmpdir} | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4"}, | |
) | |
# Run training script for 2 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 6 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--checkpointing_steps=1 | |
--resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
--output_dir {tmpdir} | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
# In the current script, checkpointing_steps 1 is equivalent to checkpointing_steps 2 as after the generator gets trained for one step, | |
# the discriminator gets trained and loss and saving happens after that. Thus we do not expect to get a checkpoint-5 | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_vqmodel_checkpointing_use_ema(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--checkpointing_steps=2 | |
--output_dir {tmpdir} | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# check can run an intermediate checkpoint | |
model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
# Run training script for 2 total steps resuming from checkpoint 4 | |
resume_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 6 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--checkpointing_steps=1 | |
--resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
--output_dir {tmpdir} | |
--use_ema | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
# check can run new fully trained pipeline | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# no checkpoint-2 -> check old checkpoints do not exist | |
# check new checkpoints exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-4", "checkpoint-6"}, | |
) | |
def test_vqmodel_checkpointing_checkpoints_total_limit(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
# Run training script with checkpointing | |
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 | |
# Should create checkpoints at steps 2, 4, 6 | |
# with checkpoint at step 2 deleted | |
initial_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 6 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--checkpoints_total_limit=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# check checkpoint directories exist | |
# checkpoint-2 should have been deleted | |
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) | |
def test_vqmodel_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) | |
# Run training script with checkpointing | |
# max_train_steps == 4, checkpointing_steps == 2 | |
# Should create checkpoints at steps 2, 4 | |
initial_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 4 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--checkpointing_steps=2 | |
--output_dir {tmpdir} | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + initial_run_args) | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-2", "checkpoint-4"}, | |
) | |
# resume and we should try to checkpoint at 6, where we'll have to remove | |
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint | |
resume_run_args = f""" | |
examples/vqgan/train_vqgan.py | |
--dataset_name hf-internal-testing/dummy_image_text_data | |
--resolution 32 | |
--image_column image | |
--train_batch_size 1 | |
--gradient_accumulation_steps 1 | |
--max_train_steps 8 | |
--learning_rate 5.0e-04 | |
--scale_lr | |
--lr_scheduler constant | |
--lr_warmup_steps 0 | |
--model_config_name_or_path {vqmodel_config_path} | |
--discriminator_config_name_or_path {discriminator_config_path} | |
--output_dir {tmpdir} | |
--checkpointing_steps=2 | |
--resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} | |
--checkpoints_total_limit=2 | |
--seed=0 | |
""".split() | |
run_command(self._launch_args + resume_run_args) | |
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") | |
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) | |
_ = model(image) | |
# check checkpoint directories exist | |
self.assertEqual( | |
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
{"checkpoint-6", "checkpoint-8"}, | |
) | |