Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
from diffusers import ( | |
DDIMScheduler, | |
DDPMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
PNDMScheduler, | |
logging, | |
) | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils.testing_utils import CaptureLogger | |
class SampleObject(ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
e=[1, 3], | |
): | |
pass | |
class SampleObject2(ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
f=[1, 3], | |
): | |
pass | |
class SampleObject3(ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
e=[1, 3], | |
f=[1, 3], | |
): | |
pass | |
class SampleObject4(ConfigMixin): | |
config_name = "config.json" | |
def __init__( | |
self, | |
a=2, | |
b=5, | |
c=(2, 5), | |
d="for diffusion", | |
e=[1, 5], | |
f=[5, 4], | |
): | |
pass | |
class ConfigTester(unittest.TestCase): | |
def test_load_not_from_mixin(self): | |
with self.assertRaises(ValueError): | |
ConfigMixin.load_config("dummy_path") | |
def test_register_to_config(self): | |
obj = SampleObject() | |
config = obj.config | |
assert config["a"] == 2 | |
assert config["b"] == 5 | |
assert config["c"] == (2, 5) | |
assert config["d"] == "for diffusion" | |
assert config["e"] == [1, 3] | |
# init ignore private arguments | |
obj = SampleObject(_name_or_path="lalala") | |
config = obj.config | |
assert config["a"] == 2 | |
assert config["b"] == 5 | |
assert config["c"] == (2, 5) | |
assert config["d"] == "for diffusion" | |
assert config["e"] == [1, 3] | |
# can override default | |
obj = SampleObject(c=6) | |
config = obj.config | |
assert config["a"] == 2 | |
assert config["b"] == 5 | |
assert config["c"] == 6 | |
assert config["d"] == "for diffusion" | |
assert config["e"] == [1, 3] | |
# can use positional arguments. | |
obj = SampleObject(1, c=6) | |
config = obj.config | |
assert config["a"] == 1 | |
assert config["b"] == 5 | |
assert config["c"] == 6 | |
assert config["d"] == "for diffusion" | |
assert config["e"] == [1, 3] | |
def test_save_load(self): | |
obj = SampleObject() | |
config = obj.config | |
assert config["a"] == 2 | |
assert config["b"] == 5 | |
assert config["c"] == (2, 5) | |
assert config["d"] == "for diffusion" | |
assert config["e"] == [1, 3] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
obj.save_config(tmpdirname) | |
new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname)) | |
new_config = new_obj.config | |
# unfreeze configs | |
config = dict(config) | |
new_config = dict(new_config) | |
assert config.pop("c") == (2, 5) # instantiated as tuple | |
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json | |
config.pop("_use_default_values") | |
assert config == new_config | |
def test_load_ddim_from_pndm(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
ddim = DDIMScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
) | |
assert ddim.__class__ == DDIMScheduler | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
def test_load_euler_from_pndm(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
euler = EulerDiscreteScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
) | |
assert euler.__class__ == EulerDiscreteScheduler | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
def test_load_euler_ancestral_from_pndm(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
euler = EulerAncestralDiscreteScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
) | |
assert euler.__class__ == EulerAncestralDiscreteScheduler | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
def test_load_pndm(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
pndm = PNDMScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
) | |
assert pndm.__class__ == PNDMScheduler | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
def test_overwrite_config_on_load(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
ddpm = DDPMScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", | |
subfolder="scheduler", | |
prediction_type="sample", | |
beta_end=8, | |
) | |
with CaptureLogger(logger) as cap_logger_2: | |
ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88) | |
assert ddpm.__class__ == DDPMScheduler | |
assert ddpm.config.prediction_type == "sample" | |
assert ddpm.config.beta_end == 8 | |
assert ddpm_2.config.beta_start == 88 | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
assert cap_logger_2.out == "" | |
def test_load_dpmsolver(self): | |
logger = logging.get_logger("diffusers.configuration_utils") | |
# 30 for warning | |
logger.setLevel(30) | |
with CaptureLogger(logger) as cap_logger: | |
dpm = DPMSolverMultistepScheduler.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler" | |
) | |
assert dpm.__class__ == DPMSolverMultistepScheduler | |
# no warning should be thrown | |
assert cap_logger.out == "" | |
def test_use_default_values(self): | |
# let's first save a config that should be in the form | |
# a=2, | |
# b=5, | |
# c=(2, 5), | |
# d="for diffusion", | |
# e=[1, 3], | |
config = SampleObject() | |
config_dict = {k: v for k, v in config.config.items() if not k.startswith("_")} | |
# make sure that default config has all keys in `_use_default_values` | |
assert set(config_dict.keys()) == set(config.config._use_default_values) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
config.save_config(tmpdirname) | |
# now loading it with SampleObject2 should put f into `_use_default_values` | |
config = SampleObject2.from_config(SampleObject2.load_config(tmpdirname)) | |
assert "f" in config.config._use_default_values | |
assert config.config.f == [1, 3] | |
# now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value | |
# **BECAUSE** it is part of `config.config._use_default_values` | |
new_config = SampleObject4.from_config(config.config) | |
assert new_config.config.f == [5, 4] | |
config.config._use_default_values.pop() | |
new_config_2 = SampleObject4.from_config(config.config) | |
assert new_config_2.config.f == [1, 3] | |
# Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5] | |
assert new_config_2.config.e == [1, 3] | |