Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import traceback | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AsymmetricAutoencoderKL, | |
AutoencoderKL, | |
AutoencoderTiny, | |
ConsistencyDecoderVAE, | |
ControlNetXSAdapter, | |
DDIMScheduler, | |
LCMScheduler, | |
StableDiffusionControlNetXSPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
load_image, | |
load_numpy, | |
require_python39_or_higher, | |
require_torch_2, | |
require_torch_gpu, | |
run_test_in_subprocess, | |
slow, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ...models.autoencoders.test_models_vae import ( | |
get_asym_autoencoder_kl_config, | |
get_autoencoder_kl_config, | |
get_autoencoder_tiny_config, | |
get_consistency_vae_config, | |
) | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_BATCH_PARAMS, | |
TEXT_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
SDFunctionTesterMixin, | |
) | |
enable_full_determinism() | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
# Will be run via run_test_in_subprocess | |
def _test_stable_diffusion_compile(in_queue, out_queue, timeout): | |
error = None | |
try: | |
_ = in_queue.get(timeout=timeout) | |
controlnet = ControlNetXSAdapter.from_pretrained( | |
"UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetXSPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
pipe.to("cuda") | |
pipe.set_progress_bar_config(disable=None) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "bird" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
).resize((512, 512)) | |
output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np") | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy" | |
) | |
expected_image = np.resize(expected_image, (512, 512, 3)) | |
assert np.abs(expected_image - image).max() < 1.0 | |
except Exception: | |
error = f"{traceback.format_exc()}" | |
results = {"error": error} | |
out_queue.put(results, timeout=timeout) | |
out_queue.join() | |
class ControlNetXSPipelineFastTests( | |
PipelineLatentTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineTesterMixin, | |
SDFunctionTesterMixin, | |
unittest.TestCase, | |
): | |
pipeline_class = StableDiffusionControlNetXSPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
test_attention_slicing = False | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=2, | |
sample_size=16, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=8, | |
norm_num_groups=4, | |
time_cond_proj_dim=time_cond_proj_dim, | |
use_linear_projection=True, | |
) | |
torch.manual_seed(0) | |
controlnet = ControlNetXSAdapter.from_unet( | |
unet=unet, | |
size_ratio=1, | |
learn_time_embedding=True, | |
conditioning_embedding_out_channels=(2, 2), | |
) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[4, 8], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=8, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"controlnet": controlnet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
controlnet_embedder_scale_factor = 2 | |
image = randn_tensor( | |
(1, 3, 8 * controlnet_embedder_scale_factor, 8 * controlnet_embedder_scale_factor), | |
generator=generator, | |
device=torch.device(device), | |
) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
"image": image, | |
} | |
return inputs | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_controlnet_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=8) | |
sd_pipe = StableDiffusionControlNetXSPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 16, 16, 3) | |
expected_slice = np.array([0.745, 0.753, 0.767, 0.543, 0.523, 0.502, 0.314, 0.521, 0.478]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
# pipeline creates a new UNetControlNetXSModel under the hood. So we need to check the dtype from pipe.components | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(dtype=torch.float16) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_multi_vae(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
block_out_channels = pipe.vae.config.block_out_channels | |
norm_num_groups = pipe.vae.config.norm_num_groups | |
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny] | |
configs = [ | |
get_autoencoder_kl_config(block_out_channels, norm_num_groups), | |
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups), | |
get_consistency_vae_config(block_out_channels, norm_num_groups), | |
get_autoencoder_tiny_config(block_out_channels), | |
] | |
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] | |
for vae_cls, config in zip(vae_classes, configs): | |
vae = vae_cls(**config) | |
vae = vae.to(torch_device) | |
components["vae"] = vae | |
vae_pipe = self.pipeline_class(**components) | |
# pipeline creates a new UNetControlNetXSModel under the hood, which aren't on device. | |
# So we need to move the new pipe to device. | |
vae_pipe.to(torch_device) | |
vae_pipe.set_progress_bar_config(disable=None) | |
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] | |
assert out_vae_np.shape == out_np.shape | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
# pipeline creates a new UNetControlNetXSModel under the hood. So we need to check the device from pipe.components | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
class ControlNetXSPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_canny(self): | |
controlnet = ControlNetXSAdapter.from_pretrained( | |
"UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetXSPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "bird" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
) | |
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
image = output.images[0] | |
assert image.shape == (768, 512, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array([0.1963, 0.229, 0.2659, 0.2109, 0.2332, 0.2827, 0.2534, 0.2422, 0.2808]) | |
assert np.allclose(original_image, expected_image, atol=1e-04) | |
def test_depth(self): | |
controlnet = ControlNetXSAdapter.from_pretrained( | |
"UmerHA/Testing-ConrolNetXS-SD2.1-depth", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetXSPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
prompt = "Stormtrooper's lecture" | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" | |
) | |
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
original_image = image[-3:, -3:, -1].flatten() | |
expected_image = np.array([0.4844, 0.4937, 0.4956, 0.4663, 0.5039, 0.5044, 0.4565, 0.4883, 0.4941]) | |
assert np.allclose(original_image, expected_image, atol=1e-04) | |
def test_stable_diffusion_compile(self): | |
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None) | |