BleachNick's picture
upload required packages
87d40d2
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import traceback
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderTiny,
ConsistencyDecoderVAE,
ControlNetXSAdapter,
DDIMScheduler,
LCMScheduler,
StableDiffusionControlNetXSPipeline,
UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_image,
load_numpy,
require_python39_or_higher,
require_torch_2,
require_torch_gpu,
run_test_in_subprocess,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ...models.autoencoders.test_models_vae import (
get_asym_autoencoder_kl_config,
get_autoencoder_kl_config,
get_autoencoder_tiny_config,
get_consistency_vae_config,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
SDFunctionTesterMixin,
)
enable_full_determinism()
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
controlnet = ControlNetXSAdapter.from_pretrained(
"UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.to("cuda")
pipe.set_progress_bar_config(disable=None)
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
).resize((512, 512))
output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (512, 512, 3)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
)
expected_image = np.resize(expected_image, (512, 512, 3))
assert np.abs(expected_image - image).max() < 1.0
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class ControlNetXSPipelineFastTests(
PipelineLatentTesterMixin,
PipelineKarrasSchedulerTesterMixin,
PipelineTesterMixin,
SDFunctionTesterMixin,
unittest.TestCase,
):
pipeline_class = StableDiffusionControlNetXSPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
test_attention_slicing = False
def get_dummy_components(self, time_cond_proj_dim=None):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=2,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=8,
norm_num_groups=4,
time_cond_proj_dim=time_cond_proj_dim,
use_linear_projection=True,
)
torch.manual_seed(0)
controlnet = ControlNetXSAdapter.from_unet(
unet=unet,
size_ratio=1,
learn_time_embedding=True,
conditioning_embedding_out_channels=(2, 2),
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[4, 8],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=8,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
image = randn_tensor(
(1, 3, 8 * controlnet_embedder_scale_factor, 8 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"image": image,
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def test_controlnet_lcm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(time_cond_proj_dim=8)
sd_pipe = StableDiffusionControlNetXSPipeline(**components)
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
expected_slice = np.array([0.745, 0.753, 0.767, 0.543, 0.523, 0.502, 0.314, 0.521, 0.478])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# pipeline creates a new UNetControlNetXSModel under the hood. So we need to check the dtype from pipe.components
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(dtype=torch.float16)
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_multi_vae(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
block_out_channels = pipe.vae.config.block_out_channels
norm_num_groups = pipe.vae.config.norm_num_groups
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
configs = [
get_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_consistency_vae_config(block_out_channels, norm_num_groups),
get_autoencoder_tiny_config(block_out_channels),
]
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
for vae_cls, config in zip(vae_classes, configs):
vae = vae_cls(**config)
vae = vae.to(torch_device)
components["vae"] = vae
vae_pipe = self.pipeline_class(**components)
# pipeline creates a new UNetControlNetXSModel under the hood, which aren't on device.
# So we need to move the new pipe to device.
vae_pipe.to(torch_device)
vae_pipe.set_progress_bar_config(disable=None)
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
assert out_vae_np.shape == out_np.shape
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
# pipeline creates a new UNetControlNetXSModel under the hood. So we need to check the device from pipe.components
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to("cuda")
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cuda" for device in model_devices))
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
@slow
@require_torch_gpu
class ControlNetXSPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = ControlNetXSAdapter.from_pretrained(
"UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "bird"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (768, 512, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array([0.1963, 0.229, 0.2659, 0.2109, 0.2332, 0.2827, 0.2534, 0.2422, 0.2808])
assert np.allclose(original_image, expected_image, atol=1e-04)
def test_depth(self):
controlnet = ControlNetXSAdapter.from_pretrained(
"UmerHA/Testing-ConrolNetXS-SD2.1-depth", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetXSPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Stormtrooper's lecture"
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
)
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
image = output.images[0]
assert image.shape == (512, 512, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array([0.4844, 0.4937, 0.4956, 0.4663, 0.5039, 0.5044, 0.4565, 0.4883, 0.4941])
assert np.allclose(original_image, expected_image, atol=1e-04)
@require_python39_or_higher
@require_torch_2
def test_stable_diffusion_compile(self):
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)