Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel | |
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device | |
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = DanceDiffusionPipeline | |
params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params - { | |
"callback", | |
"latents", | |
"callback_steps", | |
"output_type", | |
"num_images_per_prompt", | |
} | |
batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS | |
test_attention_slicing = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet1DModel( | |
block_out_channels=(32, 32, 64), | |
extra_in_channels=16, | |
sample_size=512, | |
sample_rate=16_000, | |
in_channels=2, | |
out_channels=2, | |
flip_sin_to_cos=True, | |
use_timestep_embedding=False, | |
time_embedding_type="fourier", | |
mid_block_type="UNetMidBlock1D", | |
down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), | |
up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), | |
) | |
scheduler = IPNDMScheduler() | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"batch_size": 1, | |
"generator": generator, | |
"num_inference_steps": 4, | |
} | |
return inputs | |
def test_dance_diffusion(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = DanceDiffusionPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = pipe(**inputs) | |
audio = output.audios | |
audio_slice = audio[0, -3:, -3:] | |
assert audio.shape == (1, 2, components["unet"].sample_size) | |
expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000]) | |
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_attention_slicing_forward_pass(self): | |
return super().test_attention_slicing_forward_pass() | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
class PipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_dance_diffusion(self): | |
device = torch_device | |
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k") | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) | |
audio = output.audios | |
audio_slice = audio[0, -3:, -3:] | |
assert audio.shape == (1, 2, pipe.unet.config.sample_size) | |
expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020]) | |
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_dance_diffusion_fp16(self): | |
device = torch_device | |
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096) | |
audio = output.audios | |
audio_slice = audio[0, -3:, -3:] | |
assert audio.shape == (1, 2, pipe.unet.config.sample_size) | |
expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341]) | |
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 | |