import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline parser = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") args = parser.parse_args() device = "cpu" prompt = "a lovely in red dress and hat, in the snowly and brightly night, with many brighly buildings" model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) # to channels last pipe.unet = pipe.unet.to(memory_format=torch.channels_last) pipe.vae = pipe.vae.to(memory_format=torch.channels_last) pipe.text_encoder = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: pipe.safety_checker = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex sample = torch.randn(2, 4, 64, 64) timestep = torch.rand(1) * 999 encoder_hidden_status = torch.randn(2, 77, 768) input_example = (sample, timestep, encoder_hidden_status) try: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example) except Exception: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True) pipe.vae = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloat16, inplace=True) pipe.text_encoder = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) if pipe.requires_safety_checker: pipe.safety_checker = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) # compute seed = 666 generator = torch.Generator(device).manual_seed(seed) generate_kwargs = {"generator": generator} if args.steps is not None: generate_kwargs["num_inference_steps"] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): image = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")