# GLIGEN: Open-Set Grounded Text-to-Image Generation These scripts contain the code to prepare the grounding data and train the GLIGEN model on COCO dataset. ### Install the requirements ```bash conda create -n diffusers python==3.10 conda activate diffusers pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` ### Prepare the training data If you want to make your own grounding data, you need to install the requirements. I used [RAM](https://github.com/xinyu1205/recognize-anything) to tag images, [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO/issues?q=refer) to detect objects, and [BLIP2](https://huggingface.co/docs/transformers/en/model_doc/blip-2) to caption instances. Only RAM needs to be installed manually: ```bash pip install git+https://github.com/xinyu1205/recognize-anything.git --no-deps ``` Download the pre-trained model: ```bash huggingface-cli download --resume-download xinyu1205/recognize_anything_model ram_swin_large_14m.pth huggingface-cli download --resume-download IDEA-Research/grounding-dino-base huggingface-cli download --resume-download Salesforce/blip2-flan-t5-xxl huggingface-cli download --resume-download clip-vit-large-patch14 huggingface-cli download --resume-download masterful/gligen-1-4-generation-text-box ``` Make the training data on 8 GPUs: ```bash torchrun --master_port 17673 --nproc_per_node=8 make_datasets.py \ --data_root /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \ --save_root /root/gligen_data \ --ram_checkpoint /root/.cache/huggingface/hub/models--xinyu1205--recognize_anything_model/snapshots/ebc52dc741e86466202a5ab8ab22eae6e7d48bf1/ram_swin_large_14m.pth ``` You can download the COCO training data from ```bash huggingface-cli download --resume-download Hzzone/GLIGEN_COCO coco_train2017.pth ``` It's in the format of ```json [ ... { 'file_path': Path, 'annos': [ { 'caption': Instance Caption, 'bbox': bbox in xyxy, 'text_embeddings_before_projection': CLIP text embedding before linear projection } ] } ... ] ``` ### Training commands The training script is heavily based on https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet.py ```bash accelerate launch train_gligen_text.py \ --data_path /root/data/zhizhonghuang/coco_train2017.pth \ --image_path /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \ --train_batch_size 8 \ --max_train_steps 100000 \ --checkpointing_steps 1000 \ --checkpoints_total_limit 10 \ --learning_rate 5e-5 \ --dataloader_num_workers 16 \ --mixed_precision fp16 \ --report_to wandb \ --tracker_project_name gligen \ --output_dir /root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO ``` I trained the model on 8 A100 GPUs for about 11 hours (at least 24GB GPU memory). The generated images will follow the layout possibly at 50k iterations. Note that although the pre-trained GLIGEN model has been loaded, the parameters of `fuser` and `position_net` have been reset (see line 420 in `train_gligen_text.py`) The trained model can be downloaded from ```bash huggingface-cli download --resume-download Hzzone/GLIGEN_COCO config.json diffusion_pytorch_model.safetensors ``` You can run `demo.ipynb` to visualize the generated images. Example prompts: ```python prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky' boxes = [[0.041015625, 0.548828125, 0.453125, 0.859375], [0.525390625, 0.552734375, 0.93359375, 0.865234375], [0.12890625, 0.015625, 0.412109375, 0.279296875], [0.578125, 0.08203125, 0.857421875, 0.27734375]] gligen_phrases = ['a green car', 'a blue truck', 'a red air balloon', 'a bird'] ``` Example images: ![alt text](generated-images-100000-00.png) ### Citation ``` @article{li2023gligen, title={GLIGEN: Open-Set Grounded Text-to-Image Generation}, author={Li, Yuheng and Liu, Haotian and Wu, Qingyang and Mu, Fangzhou and Yang, Jianwei and Gao, Jianfeng and Li, Chunyuan and Lee, Yong Jae}, journal={CVPR}, year={2023} } ```