# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device enable_full_determinism() class PNDMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_inference(self): unet = self.dummy_uncond_unet scheduler = PNDMScheduler() pndm = PNDMPipeline(unet=unet, scheduler=scheduler) pndm.to(torch_device) pndm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = pndm(generator=generator, num_inference_steps=20, output_type="np").images generator = torch.manual_seed(0) image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="np", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @nightly @require_torch class PNDMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = PNDMScheduler() pndm = PNDMPipeline(unet=unet, scheduler=scheduler) pndm.to(torch_device) pndm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = pndm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2