Spaces:
Running
on
Zero
Running
on
Zero
# model.py | |
import json | |
import torch | |
from torch.utils.data import DataLoader | |
from llava.dataset.obj_identifier_dataset import ( | |
ObjIdentifierDataset, | |
DataCollatorForBatchDecodingObjIdentifierDataset, | |
) | |
from llava.mm_utils import get_model_name_from_path | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
def load_model_and_dataloader(model_path, model_base, scene_to_obj_mapping, obj_context_feature_type="text", load_8bit=False, load_4bit=False, load_bf16=False): | |
disable_torch_init() | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path=model_path, | |
model_base=model_base, | |
model_name=model_name, | |
load_8bit=load_8bit, | |
load_4bit=load_4bit, | |
load_bf16=load_bf16, | |
) | |
dataset = ObjIdentifierDataset( | |
tokenizer=tokenizer, | |
data_path=[], | |
scene_to_obj_mapping=scene_to_obj_mapping, | |
obj_context_feature_type=obj_context_feature_type, | |
mode="generate", | |
) | |
collator = DataCollatorForBatchDecodingObjIdentifierDataset(tokenizer=tokenizer) | |
data_loader = DataLoader( | |
dataset, collate_fn=collator, batch_size=1, num_workers=0, shuffle=False | |
) | |
return tokenizer, model, data_loader | |
def get_model_response(model, tokenizer, data_loader, scene_id, user_input, max_new_tokens=50, temperature=0.2, top_p=0.9): | |
input_data = [ | |
{ | |
"id": f"interactive@{scene_id}@input", | |
"scene_id": scene_id, | |
"conversations": [{"from": "human", "value": f"Ground these sentences: <refer_expression>{user_input}<refer_expression>\n<image>"}], | |
"ground_truth": "User provided description for interactive session.", | |
} | |
] | |
data_loader.dataset.update_data(input_data) | |
for batch in data_loader: | |
input_ids = batch["input_ids"].squeeze(dim=1).cuda() | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
use_cache=True, | |
) | |
prompt = tokenizer.batch_decode(input_ids)[0] | |
outputs = tokenizer.batch_decode(output_ids[:, input_ids.shape[-1]:], skip_special_tokens=True) | |
return prompt, outputs[0] | |